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INTRODUCTION 
 Recently, there has been an increasing number of studies that have used the chemical exchange effect to probe the tissue microenvironment and provide novel imaging 
contrasts that are not available from conventional magnetic resonance imaging (MRI) techniques. Most of these studies adopted either a chemical exchange saturation 
transfer (CEST) or a spin-locking (SL) approach [1]. Jin et al. [1] performed CEST and SL experiments to compare the characteristics of the CEST and SL approaches 
in the study of chemical exchange effects. Kogan et al. [2] developed a new method to measure proton exchange which combines CEST and SL methods (CESTrho). 
CESTrho contrast mechanism, however, is complex, depending not only on the concentration of CEST agents, exchange and relaxation properties, but also varying with 
experimental conditions such as magnetic field strength and radiofrequency (RF) power. Thus, for investigating these optimal conditions, numerical simulations are 
useful and effective. To perform extensive numerical simulations for CESTrho MRI, it will be necessary to develop a simple and fast method for obtaining the numerical 
solutions to the time-dependent Bloch equations. Then, the purpose of this study was to demonstrate a simple and fast method for solving the time-dependent Bloch 
equations in CESTrho MRI using the 2-pool CEST model [3].  
MATERIALS AND METHODS 
 The Bloch equations in the 2-pool CEST model are given by dM(t)/dt=A・M(t)...(1) [3], where M(t)=[Mx

a(t) Mx
b(t) My

a(t) My
b(t) Mz

a(t) Mz
b(t) 1]T and superscripts a and 

b show the parameters in pool a and pool b, respectively. For example, Mx
a(t) denotes the x component of the magnetization in pool a at time t. A in Eq. (1) is given by 

Eq. (2), where R1
a (=1/T1

a) and R2
a (=1/T2

a) denote the longitudinal and transverse relaxation rates in pool a, respectively, R1
b (=1/T1

b) and R2
b (=1/T2

b) those in pool b, ka 
the exchange rate from pool a to pool b, kb the exchange rate from pool b 
to pool a, and M0

a and M0
b the thermal equilibrium z magnetizations in 

pool a and pool b, respectively. Δωa and Δωb are given by ωa-ω and ωb-ω, 
respectively, where ωa and ωb are the Larmor frequencies in pool a and 
pool b, respectively, ω is the frequency of RF irradiation, and ω1 is the 
nutation rate of the RF irradiation. The solution of Eq. (1) can be given by 
M(t)=eAt・M(0)...(3) [3], where M(0)=[0 0 0 0 M0

a M0
b 1]T and eAt is the 

matrix exponential that can be computed using diagonalization [3].  
 Figure 1 illustrates the magnetization in the rotating frame in the case 
when spins are locked by an SL pulse that is applied on the x-axis at an offset frequency 
Ω. The effective SL field (B1

eff) is given by B1
eff=(ω1

2+Ω2)1/2/γ, where γ is the 
gyromagnetic ratio. To achieve SL, the magnetization is first flipped by the θ-degree 
pulse to the x-z plane, then locked by B1

eff for a duration of SL (tSL), and then flipped 
back to the z-axis for imaging. The θ-degree rotation matrix [R(θ)] is given by Eq. (4), 
where θ=tan-1(ω1/Ω). Thus, we obtain the magnetization after SL as 
M(tSL)=R(-θ)eAtSLR(θ)M(0)...(5). Note that Ω and θ are 0 and π/2, respectively, for an 
on-resonance SL. 

To calculate the longitudinal relaxation time in the rotating frame (T1ρ), the z component of magnetization in pool a for tSL [Mz
a(tSL)] was fitted to the following 

equation: Mz
a(tSL)=(M0

a-Mzss
a)exp(-tSL/T1ρ)+Mzss

a...(6), where Mzss
a denotes the steady-state z component of magnetization in pool a. On the other hand, Trott and Palmer 

[4] derived the approximate solution for R1ρ (=1/T1ρ) by replacing R1
a and R1

b by 
R1=PaR1

a+PbR1
b and R2

a and R2
b by R2=PaR2

a+PbR2
b, where Pa and Pb are the fractional sizes 

of pool a and pool b, and are given by Pa=M0
a/(M0

a+M0
b) and Pb=M0

b/(M0
a+M0

b), 
respectively: R1ρ=R1cos2θ+(R2+Rex)sin2θ...(7). To validate our method, we compared the T1ρ 
or R1ρ values obtained by our method with or without use of the population-averaged R1 
and R2 values with those calculated from Eq. (7). In this study, unless specifically stated, 
Ω=2000 Hz for an off-resonance SL, ωa-ωb=2400 Hz, ω1=1000 Hz, R1=1.5 s-1, R2=11 s-1, kex 
(=ka+kb) =1500 s-1, kaM0

a=kbM0
b, M0

a=1, M0
b=0.03, T1

a=3 s, and T2
a=50 ms were assumed. 

RESULTS AND DISCUSSION  
 Figures 2, 3, and 4 show the T1ρ and R1ρ values as a function of kex (=ka+kb), ω1, and offset 
frequency, respectively. (a) and (b) in Figs. 2 and 3 show the on- and off-resonance cases, 
respectively. The solid, dotted, and dashed curves in Figs. 2-4 show cases when the T1ρ and 
R1ρ values were obtained by use of Eq. (7), our method with use of the population-averaged 
R1 and R2 values, and our method without use of them, respectively. When the 
population-averaged R1 and R2 values were used, the T1ρ or R1ρ values obtained by our 
method (dotted curves) agreed with the approximate solutions (solid curves) given by Trott 
and Palmer [4] except for the case when an RF pulse with small ω1 was applied under the 
on-resonance SL [Fig. 3(a)]. These results appear to indicate the validity of our method. On 
the other hand, when the population-averaged R1 and R2 values were not used, some 
differences were observed between them (dashed and solid curves in Figs. 2-4). 
 As previously described, matrix operation was used in our method for solving the Bloch 
equations in CESTrho MRI. Although an ordinary differential equation (ODE) solver can also be used, the computation time 
was considerably reduced when using our method (by a factor of approximately 5000 compared to the ODE solver). In this study, 
we treated the 2-pool CEST model as an illustrative example. However, CEST agents often have more than one type of 
exchangeable proton. For such cases, it is necessary to expand the Bloch equations to multi-pool exchange models. Our method 
can easily be extended to multi-pool models by modifying the matrix A given by Eq. (2). 
CONCLUSION  
 We presented a simple and fast method for solving the time-dependent Bloch equations in CESTrho MRI and validated our 
method by comparing it with the approximate solution derived by Trott and Palmer [4]. We believe that our method will be 
useful for better understanding and optimization of CESTrho MRI. 
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