
Figure 3. A simulated theoretical phantom (a) and reconstructed images from 
gridding (b), backpronection (c), and linogram reconstruction (d).  
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Introduction 
  In radial MRI, k-space is sampled in a radial manner, namely, on a polar coordinate system. Reconstruction of radial MRI is typically performed with gridding or 
filtered backprojection. In gridding reconstruction, the acquired data is resampled to a Cartesian k-space by convolving with an interpolation kernel and then performing 
Fourier transformation (FT). In filtered backprojection, FT is performed in polar coordinates, and resampling from polar to Cartesian coordinates is performed along 
with the integration over angular variables. For both methods, the resampling and sampling density correction correspond to interpolation and calculation of the 
Jacobian in the Fourier integral, respectively. Linogram sampling, introduced to radial MRI about 20 years ago, is a “semi-Cartesian” k-space sampling method, where 
the sampling pattern is a concentric square (2D) 1 or cubic grid (3D) 2 as shown in Fig.1a. For linogram sampling, there is a corresponding reconstruction algorithm 
known as linogram reconstruction that does not need explicit interpolation and simplifies the Jacobian calculation, i.e. density correction. Therefore, linogram 
reconstruction may improve resolution, minimize interpolation errors, and reduce computational time. In this study, we show point spread functions (PSF) and 
reconstructed images from 3D linogram data that were calculated with the three reconstruction methods: gridding, backprojection and linogram reconstruction. The 
linogram data were obtained in two separate ways: a Bloch simulation and an experiment with SWeep Imaging with Fourier Transformation (SWIFT)3.   
Method 
  3D simulation data were generated by numerically integrating the Bloch equation. Sequence parameters in the 
numerical SWIFT simulation were as follow: bandwidth = 125 kHz, flip angle = 10°, hyperbolic secant (HS1) 
gapped pulse excitation, T2

* = 20 ms, # of sampling points = 256, and # of views = 46,464. A 3D theoretical 
phantom shown in Fig.3a was used for the simulation. A SWIFT experiment was performed in a 9.4T 31 cm 
horizontal bore magnet with parameters comparable to the numerical simulation, with the exception of: nominal 
flip angle = 6°, TR = 2.3 ms, and FOV=7.0x7.0x7.0 cm3. Measurement was done on a 50 mM MnCl2 phantom that 
was fixed with 1.5% agar and that held a spouted cylindrical Teflon object inside.  
  Calculation of PSFs and image reconstruction were performed with in-house developed C code. The 
reconstruction programs were parallelized with openMP4 for gridding and linogram reconstruction and MPI5 for 
backprojection. All the programs were run using an Intel Quad-Core Xenon X5470 3.33 GHz processor. 
  Gridding was performed according to the previous report6. Kaiser-Bessel window function 
with 3 pixel width in data space and 2 times oversampling were used. Sampling density 
correction was performed in an iterative manner7 (3 times iteration). After gridding, we applied 
FT and got a 3D image.  
  In backprojection, the Fourier integral is expressed by using the second derivative of the 
projection P(r,φ,θ)8 as 
 
 
where ρ(x,y,z) is the image to be reconstructed and W(φ,θ) is a weighting function that is an 
angular component of the Jacobian, i.e., an angular density correction factor. In linogram 
sampling, W(φ,θ)=(n⋅g)2, in which n is a unit vector that is normal to the plane of the sampling 
cube and g=(sinθcosφ, sinθsinφ, cosθ) that orients to the applied gradient direction. 
  In linogram reconstruction, the linogram k-space was divided into three 
non-overlapping mutually orthogonal double pyramids (Fig.1b). Each of them was 
composed of planes on which data points were rectilinear and equispaced. Each plane 
had different spacing between the data points and thus the general discrete FT does not 
work. Therefore, we applied 2D FT to each plane separately using chirp-Z transform9, 
which performs simultaneous 2D scaling and FT. We applied general 1D FT along the 
remaining dimension that is perpendicular to the 2D chirp-Z planes and then summed 
up the three data sets to get a 3D image.   
Results and Discussion 

PSFs from the three reconstruction methods are shown in Fig.2. PSFs from 
gridding and linogram reconstruction showed a sharp edge due to aliasing (yellow 
dashed lines in Fig.2a,c), which was not observed in the PSF from backprojection 
(Fig.2b), because FT was calculated in polar coordinates for backprojection. 

Images from the Bloch simulation of SWIFT are shown in Fig.3. All three methods provided 
similar images, but the image from backprojection had slightly more blurring due to direct 
interpolation in image space (i.e., linear interpolation was used in backprojection) or possibly 
the choice of filtering. Using more appropriate interpolation methods such as cubic 
convolution interpolation and Lanczos interpolation may improve the image resolution. The 
difference in aliasing effects between backprojection and the other two methods is also 
apparent in the reconstructed images. In the images from gridding and linogram reconstruction, 
there were double rhombic lines, the outer of which should be aliasing signals from the inner 
one (red dashed lines in Fig.3b,d). However, there was a single line found in the image from 
backprojection. Images from a SWIFT experiment showed the same trend as the numerical 
simulation (Fig.4). 

One big difference between the three methods is the computational cost. Computational time for reconstruction is 83 s, 1297 s, and 27 s for gridding, backprojection 
and linogram reconstruction, respectively. In gridding, the majority of the time is spent for calculation of the density correction, whereas it is very simple for linogram 
reconstruction, since the Jacobian in the 2D Fourier integral is constant on each rectilinear and equispaced plane. While the computational time for gridding and 
backprojection is proportional to the total number of views, linogram reconstruction is relatively independent of the view number. Accordingly, linogram reconstruction 
is advantageous for reconstruction of high resolution (large number of views) data.   
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Figure 1. (a) 3D linogram sampling pattern. (b) One 
of the three orthogonal double pyramids for 
linogram reconstruction.  
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Figure 2. Point spread functions of (a) gridding, (b) backprojection and 
(c) linogram reconstruction for linogram sampling data. 

Figure 4. Images reconstructed from phantom experiment data with 
gridding (a), backprojection (b) and linogram reconstrucion(c) 
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