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Introduction

In radial MRI, k-space is sampled in a radial manner, namely, on a polar coordinate system. Reconstruction of radial MRI is typically performed with gridding or
filtered backprojection. In gridding reconstruction, the acquired data is resampled to a Cartesian k-space by convolving with an interpolation kernel and then performing
Fourier transformation (FT). In filtered backprojection, FT is performed in polar coordinates, and resampling from polar to Cartesian coordinates is performed along
with the integration over angular variables. For both methods, the resampling and sampling density correction correspond to interpolation and calculation of the
Jacobian in the Fourier integral, respectively. Linogram sampling, introduced to radial MRI about 20 years ago, is a “semi-Cartesian” k-space sampling method, where
the sampling pattern is a concentric square (2D)' or cubic grid (3D)? as shown in Fig.la. For linogram sampling, there is a corresponding reconstruction algorithm
known as linogram reconstruction that does not need explicit interpolation and simplifies the Jacobian calculation, i.e. density correction. Therefore, linogram
reconstruction may improve resolution, minimize interpolation errors, and reduce computational time. In this study, we show point spread functions (PSF) and
reconstructed images from 3D llnogram data that were calculated with the three reconstruction methods: gridding, backprojection and linogram reconstructlon The
linogram data were obtained in two separate ways: a Bloch simulation and an experiment with SWeep Imaging with Fourier Transformation (SWIFT)’.

Method

3D simulation data were generated by numerically integrating the Bloch equation. Sequence parameters in the
numerical SWIFT simulation were as follow: bandwidth = 125 kHz, flip angle = 10°, hyperbolic secant (HS1)
gapped pulse excitation, T,"= 20 ms, # of sampling points = 256, and # of views = 46,464. A 3D theoretical
phantom shown in Fig. 3a was used for the simulation. A SWIFT experiment was performed in a 94T 31 cm
horizontal bore magnet with parameters comparable to the numerical simulation, with the exception of: nominal
flip angle = 6°, TR = 2.3 ms, and FOV=7.0x7.0x7.0 cm’. Measurement was done on a 50 mM MnCl, phantom that
was fixed with 1. 5% agar and that held a spouted cylindrical Teflon object inside.

Calculation of PSFs and image reconstruction were performed with in-house developed C code. The Figure 1. (d) 3D linogram sampling pattern. (b) One
reconstruction programs were parallelized with openMP* for gridding and linogram reconstruction and MPI® for of the three orthogonal double pyramids for
backprojection. All the programs were run using an Intel Quad Core Xenon X5470 3.33 GHz processor. linogram reconstruction.

Gridding was performed according to the previous report’. Kaiser-Bessel window function
with 3 pixel width in data space and 2 times oversampling were used. Sampling density
correction was performed in an iterative manner’ (3 times iteration). After gridding, we applied
FT and got a 3D image.

In backprojectiosn, the Fourier integral is expressed by using the second derivative of the
projection P(r,¢,6)° as . PP(r6.0

Pl == [ [T w(9.0) SLLLD

where p(x,y,z) is the image to be reconstructed and W(¢,€) is a weighting function that is an ...H
angular component of the Jacobian, i.e., an angular density correction factor. In linogram

sampling, W(#,6)=(n-g)’, in which n is a unit vector that is normal to the plane of the sampling Figure 2. Point spread functions of (a) gridding, (b) backprojection and
cube and g=(sin&os ¢, sinésing, cosd) that orients to the applied gradient direction. (¢) linogram reconstruction for linogram sampling data.

In linogram reconstruction, the linogram k-space was divided into three
non-overlapping mutually orthogonal double pyramids (Fig.1b). Each of them was
composed of planes on which data points were rectilinear and equispaced. Each plane
had different spacing between the data points and thus the general discrete FT does not
work. Therefore, we applied 2D FT to each plane separately using chirp-Z transform’,
which performs simultaneous 2D scaling and FT. We applied general 1D FT along the
remaining dimension that is perpendicular to the 2D chirp-Z planes and then summed
up the three data sets to get a 3D image.
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Results and Discussion . N Figure 3. A simulated theoretical phantom (a) and reconstructed images from
PSFs from the three reconstruction methods are shown in Fig.2. PSFs from gridding (b), backpronection (c), and linogram reconstruction (d).

gridding and linogram reconstruction showed a sharp edge due to aliasing (yellow
dashed lines in Fig.2a,c), which was not observed in the PSF from backprojection
(Fig.2b), because FT was calculated in polar coordinates for backprojection.

Images from the Bloch simulation of SWIFT are shown in Fig.3. All three methods provided
similar images, but the image from backprojection had slightly more blurring due to direct
interpolation in image space (i.e., linear interpolation was used in backprojection) or possibly
the choice of filtering. Using more appropriate interpolation methods such as cubic
convolution interpolation and Lanczos interpolation may improve the image resolution. The
difference in aliasing effects between backprojection and the other two methods is also
apparent in the reconstructed images. In the images from gridding and linogram reconstruction,
there were double rhombic lines, the outer of which should be aliasing signals from the inner
one (red dashed lines in Fig.3b,d). However, there was a single line found in the image from
backprojection. Images from a SWIFT experiment showed the same trend as the numerical
simulation (Fig.4).

One big difference between the three methods is the computational cost. Computational time for reconstruction is 83 s, 1297 s, and 27 s for gridding, backprojection
and linogram reconstruction, respectively. In gridding, the majority of the time is spent for calculation of the density correction, whereas it is very simple for linogram
reconstruction, since the Jacobian in the 2D Fourier integral is constant on each rectilinear and equispaced plane. While the computational time for gridding and
backprojection is proportional to the total number of views, linogram reconstruction is relatively independent of the view number. Accordingly, linogram reconstruction
is advantageous for reconstruction of high resolution (large number of views) data.
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Figure 4. Images reconstructed from phantom experiment data with
gridding (a), backprojection (b) and linogram reconstrucion(c)
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