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Introduction: Spatial and temporal prior information has been increasingly explored
for accelerating time resolved imaging. Previously, kt-GRAPPA and other methods (1-
3) exploit temporal redundancy, but are restricted to strict Cartesian sampling or
calibration kernels with specific patterns. kt-SPARSE, kt-FOCUSS and kt-SPIRIT (4-6)
allow for arbitrary sampling while constraining temporal sparsity in an L1 sense, which
may not always be optimal if the signal is not highly compressible. Here we propose
PROST (Parallel Reconstruction Observing Self consistency and Temporal
smoothness) which is implemented by extending the SPIRIT self-consistency kernel
to the time domain enforcing temporal smoothness in k-t space while allowing
arbitrary view ordering as in the original SPIRIT formulation (7).

Theory: PROST is based on the assumption that each temporal phase has small
changes with respect to its neighbors (temporal smoothness). To incorporate temporal
smoothness, a spatial and temporal kernel (figure 1) is calibrated from training data
that is acquired at each time point. Principal components analysis (PCA) is
incorporated into PROST to further express the information redundancy in the
temporal dimension thereby reducing the number of unknowns (8,9). PROST can be
formulated as a least squares minimization: argmin,||DBx — y||® + A||(G — I)Bx]|?.
Where vy is the sampled data in k-space and all time and Bx is the reconstructed k-
space data over all time. G is the grappa kernel, which extends over the k-space, the
coil as well as the time dimension (figure 1). D is a projection onto the acquired k-
space lines, B is the temporal basis derived from a principal components analysis of
the fully acquired center of k-space and x are the unknown spatial weights of the k-
space data in the B basis. The conjugate gradient algorithm was used to solve the
minimization problem.

Methods: Optimization was carried out on a retrospectively under-sampled CINE
scan by varying the number of training lines, number of principal components and
kernel sizes. After optimization, a pulse sequence was developed to implement a truly
under-sampled data acquisition with semi-random Cartesian golden ratio view
ordering. 8 healthy volunteers were scanned at 1.5 T. CINE imaging was carried out
at 1x under-sampling and 6x (true) under-sampling including 6 training lines for PCA
and kernel calibration. Scan parameters were: 256x192 matrix. .75 PFOV, 1 NEX, 8
views per segment (VPS) and 12-14 slices (6 mm thick; 4 mm gap). Scan times
varied based on heart rates. The 6x under-sampled scan required 3-4 breath-holds for
whole heart coverage compared to 12-14 breath-holds (depending on the number of
slices) for fully sampled reference scans. MATLAB (Mathworks, Natick MA) was used
for reconstruction. Ejection fraction was determined by an experienced reader.
Results: Optimal parameters were as follows: [3x3x3] kernel size, 10 principal
components and 6 training lines. These parameters were used for comparison of
PROST, PROST without PCA and SPIRIT using temporal updates as in (7) on a
retrospectively under-sampled dataset (figure 2). Volunteer data from a fully sampled
scan as well as data from a scan under-sampled at a true reduction factor of 6 is
shown in figure 3. Ejection fraction for the fully sampled dataset was 64.2 + 4.0 %
(mean % std. dev) and the under-sampled data gave an ejection fraction of 65.2 + 3.3
%. These values were not statistically different (p = 0.11).

Discussion: PROST is a SPIRIT based method that imposes temporal smoothness
while allowing for arbitrary view orders. As shown in figure 2, PROST improves error
performance compared to regular SPIRiT. During optimization, PCA improved
convergence from 31 iterations (PROST w/o PCA) to 24. PCA only improved error in
diastole where temporal changes are slower and easily compressible. In volunteers,
reconstruction error was reduced with higher temporal resolution (8 VPS or less), due
to the inherent assumptions in PROST about temporal smoothness. When used for
CINE imaging, PROST gives similar ejection fraction values when compared to fully
sampled data. Extensions include adding additional regularization such as L1 (4-6)
and utilizing spiral/radial trajectories (3,7). PROST can be used to significantly
improve temporal resolution while keeping (or reducing) the total scan time.
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Figure 1: The standard SPIRIT kernel and the spatio-
temporal SPIRIT kernel used in PROST. The red
sphere is fit using neighbors (grey) in k-space
(SPIRIT) and both k-space and time (PROST). For
simplicity, the coil dimension is not shown.
20 . .

-

n
~

4

27

’

A -y

\ Temporal SPIRiT/ ]
\ ’ i

/)

Relative Error %
-

=
o

\ AN
veae N

2~
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Figure 2: Comparison of PROST, PROST without

PCA and SPIRIT in one healthy volunteer.
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Figure 3: CINE images reconstructed with fully
sampled and truly 6x under-sampled data in one
volunteer. The time-course of an intensity profile
(top left image) is shown.



