
Introduction: Quantitative MRI (qMRI) provides numerical maps of MR parameters, such as T1 and T2 relaxation times,, that help to glean additional information 
about tissue micro structure compared to the traditional visualization of human anatomy by MRI.  The estimation of qMRI parameters requires acquisition of multiple 

datasets at different values of pulse sequence (control) parameters, e.g. flip angles or inversion times, followed by reconstruction of the corresponding series of images 

and fitting these images to an analytical signal model equation to yield parametric maps of interest.   As a result, qMRI typically incurs a several-fold increase in scan 
time, making it prone to patient motion and limiting its utility in clinical settings.  Recently, a number of advanced image reconstruction techniques have been proposed 

[1-3] to obtain parameter maps from accelerated undersampled data that rely heavily on theoretical knowledge about signal evolution in the parametric dimension and 

its dependence on control parameters. In [2], the signal equation is used to design a representation system that should allow for a sparse representation of an image 
series, while [3] uses the fact that signal curves can be approximated well by piecewise constant or linear functions to design a sparsifying transform acting in the 

parametric dimension.  Although both approaches have demonstrated promising results, the generality of the sparsifying transforms they use limits the achievable 

acceleration factors   In this work, we propose a model-driven compressed sensing (CS) approach that interleaves signal estimation with adaptive update of sparsifying 
transforms based both on the analytical model equation and signal estimates. 

Theory and Methods: Let   be a parametric image series dependent on user-prescribed control parameters       and unknown free parameters  , which are 

governed by the analytical model           .  In accelerated imaging,   has to be obtained from an underdetermined problem     , where   is the encoding matrix 

and   is the measured k-space data for all values of control parameters. Suppose that we have a good estimate    of signal behavior in parametric dimension and can 

design a transform     so that      is piecewise constant. Then   can be reconstructed 

accurately by solving the regularized problem                  
      

        
 , 

where   
  is the 1st difference operator in the parametric dimension and   is a regularization 

parameter. For example, if    is a good approximation to the solution  , then the choice of 

               will result in a nearly constant function and, combined with the 1st 

difference operator, will provide a good sparsification. Intuitively, the goal of      is to 

“straighten” the signal curve prior to an application of   
 .   Since no good estimate of   is 

available initially, we propose to utilize analytical model to adjust sparsifying transform 

adaptively in a series of iterations as described in the Algorithm Outline. The sparsifying 

transforms are updates until                
 
  , and   is obtained using conjugate 

gradient (CG). In practice, 10 transform updates and 100 CG iterations were needed keeping 

total reconstruction time on the order of several minutes.  
We apply the proposed algorithm to T1 mapping using variable flip angle (VFA) [4] and 

Look-Locker inversion recovery [5] methods.  A realistic brain phantom [6] was used to 

simulate a VFA acquisition with TR=8 ms and 10 flip angles uniformly distributed from 1° 
to 19°. Eight-fold accelerated k-space data were generated for random sampling with 8 coil 

receivers both with and without addition of white Gaussian noise. Three 128x128x10 image 

series were reconstructed using iterative SENSE [7], CS with 1st difference in parametric 
dimension regularization [3], and the proposed algorithm, and T1 maps were obtained from 

each series.  

Fully sampled inversion recovery data from a healthy volunteer were collected for 40 
inversion time increments of 72 ms with TR=3 s on a 1.5 T clinical scanner (Philips 

Healthcare) . The single channel data were retrospectively undersampled by taking random 

phase encodes with acceleration factor 6. Reconstruction results for 224x224x40 image 
series and T1 maps were compared for the proposed method, CS with 1st difference and 

zero-filling. 

Results: In the absence of noise the proposed algorithm provides near perfect 

reconstruction of T1 maps (not shown) with normalized root mean square error (nRMSE) of 0.4%, while SENSE and CS suffer from some resolution loss with nRMSE 
= 1.25% and 5.54%, respectively.  Figure 1 compares results of image reconstruction of simulated noisy VFA data. Note 

the superior noise properties of the proposed adaptive algorithm. Errors from individual images propagate into 

parametric T1 maps resulting in nRMSE of 32.92% (SENSE), 5.82% (CS) and 4.32% (adaptive CS).  
Figure 2 compares reconstruction results for R1=1/T1 maps. The use of the adaptive sparsifying transform helps 

minimize residual aliasing artifacts still present in CS results, which is reflected in nRMSE of 15% for zero-filling, 9.4% 

for CS and 8.0% for adaptive CS. 

Conclusions: Inter-image dependencies in parametric image series can be exploited in CS-like reconstruction to 
accelerate qMRI. However, when the actual data do not conform to the chosen sparsifying strategy, reconstruction 

accuracy is compromised or acceleration is limited. The proposed adaptive model-driven design of sparsifying transform 
based on available signal estimates further enhances sparsity and improves accuracy of parametric map reconstruction as 

demonstrated in T1 relaxometry.  The proposed algorithm can also be used in other qMRI applications, especially when 

the analytical model allows an efficient fit to facilitate computations for sparsifying transform updates such as in case of 
VFA T1 mapping and spin echo T2 mapping.  The proposed algorithm presents a computationally inexpensive 

alternative to more complicated and time consuming methods that utilize analytical models in the parametric 

reconstruction, such as [1].   
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Algorithm Outline  

Initialize:              

           
 

        
      

           
  
  

Step1: Update solution vector: 

           
 

                  
 

 
 

Step 2: Estimate parameters by fitting to the analytical model: 

                 
     

Step 3: Reproject from parametric space to image space: 

Go to Step 1 with  updated sparsifying transform   
        

Figure 1. Representative images from parametric VFA image series and 

their reconstruction error for different algorithms. 

Figure 2. R1 maps for acceleration factor of 6. 
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