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Introduction: Quantitative MRI (QMRI) provides numerical maps of MR parameters, such as T1 and T2 relaxation times,, that help to glean additional information
about tissue micro structure compared to the traditional visualization of human anatomy by MRI. The estimation of qMRI parameters requires acquisition of multiple
datasets at different values of pulse sequence (control) parameters, e.g. flip angles or inversion times, followed by reconstruction of the corresponding series of images
and fitting these images to an analytical signal model equation to yield parametric maps of interest. As a result, gMRI typically incurs a several-fold increase in scan
time, making it prone to patient motion and limiting its utility in clinical settings. Recently, a number of advanced image reconstruction techniques have been proposed
[1-3] to obtain parameter maps from accelerated undersampled data that rely heavily on theoretical knowledge about signal evolution in the parametric dimension and
its dependence on control parameters. In [2], the signal equation is used to design a representation system that should allow for a sparse representation of an image
series, while [3] uses the fact that signal curves can be approximated well by piecewise constant or linear functions to design a sparsifying transform acting in the
parametric dimension. Although both approaches have demonstrated promising results, the generality of the sparsifying transforms they use limits the achievable
acceleration factors In this work, we propose a model-driven compressed sensing (CS) approach that interleaves signal estimation with adaptive update of sparsifying
transforms based both on the analytical model equation and signal estimates.

Theory and Methods: Let f be a parametric image series dependent on user-prescribed control parameters p,,,, and unknown free parameters p, which are
governed by the analytical model F(p.; p). In accelerated imaging, f has to be obtained from an underdetermined problem Ef = b, where E is the encoding matrix
and b is the measured k-space data for all values of control parameters. Suppose that we have a good estimate f of signal behavior in parametric dimension and can
design a transform @z so that @;f is piecewise constant. Then f can be reconstructed
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gradient (CG). In practice, 10 transform updates and 100 CG iterations were needed keeping
total reconstruction time on the order of several minutes.
We apply the proposed algorithm to T1 mapping using variable flip angle (VFA) [4] and
Look-Locker inversion recovery [5] methods. A realistic brain phantom [6] was used to
simulate a VFA acquisition with TR=8 ms and 10 flip angles uniformly distributed from 1°
to 19°. Eight-fold accelerated k-space data were generated for random sampling with 8 coil
receivers both with and without addition of white Gaussian noise. Three 128x128x10 image
series were reconstructed using iterative SENSE [7], CS with 1st difference in parametric
dimension regularization [3], and the proposed algorithm, and T1 maps were obtained from
each series.
Fully sampled inversion recovery data from a healthy volunteer were collected for 40
inversion time increments of 72 ms with TR=3 s on a 1.5 T clinical scanner (Philips
Healthcare) . The single channel data were retrospectively undersampled by taking random
phase encodes with acceleration factor 6. Reconstruction results for 224x224x40 image
series and T1 maps were compared for the proposed method, CS with 1st difference and X
zero-filling. Figure 1. Representative images from parametric VFA image series and

Results: In the absence of noise the proposed algorithm provides near perfect Cteir reconstruction error for different algorithms.

reconstruction of T1 maps (not shown) with normalized root mean square error ("(RMSE) of 0.4%, while SENSE and CS suffer from some resolution loss with nRMSE
=1.25% and 5.54%, respectively. Figure 1 compares results of image reconstruction of simulated noisy VFA data. Note
the superior noise properties of the proposed adaptive algorithm. Errors from individual images propagate into
parametric T1 maps resulting in nRMSE of 32.92% (SENSE), 5.82% (CS) and 4.32% (adaptive CS).

Figure 2 compares reconstruction results for R1=1/T1 maps. The use of the adaptive sparsifying transform helps
minimize residual aliasing artifacts still present in CS results, which is reflected in NRMSE of 15% for zero-filling, 9.4%
for CS and 8.0% for adaptive CS.

Conclusions: Inter-image dependencies in parametric image series can be exploited in CS-like reconstruction to
accelerate qMRI. However, when the actual data do not conform to the chosen sparsifying strategy, reconstruction
accuracy is compromised or acceleration is limited. The proposed adaptive model-driven design of sparsifying transform
based on available signal estimates further enhances sparsity and improves accuracy of parametric map reconstruction as
demonstrated in T1 relaxometry. The proposed algorithm can also be used in other gMRI applications, especially when
the analytical model allows an efficient fit to facilitate computations for sparsifying transform updates such as in case of
VFA T1 mapping and spin echo T2 mapping. The proposed algorithm presents a computationally inexpensive
alternative to more complicated and time consuming methods that utilize analytical models in the parametric
reconstruction, such as [1]. Fig
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accurately by solving the regularized problem f = argmin (||Ef — bl +/1||A},q>ff||lz),

Step 2: Estimate parameters by fitting to the analytical model:
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ure 2. R1 maps for acceleration factor of 6.
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