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Introduction Traditionally, ADC determination involves mono-exponential fitting of diffusion weighted imaging (DWI)
data, thus potentially ignoring microperfusion contributions to the signal decay at low b-values. Recent work has
demonstrated that it is technically possible to acquire DWI data of the brain [1] and other organs [2-6] with low b-values in
an attempt to quantify this perfusive fraction of the ADC decay curve via bi-exponential modelling. However, large
uncertainties in the fitted parameters have prevented the widespread adoption of this technique. Efforts to optimise the
acquisition protocol have been made [7] and it appears evident that increased sampling at low b-values to adequately
define the rapidly decaying perfusive weighted component is necessary. Adapting the work of Shrager et al [8], which
investigated optimal time spacing for T, measurements in mono- and bi-exponential systems, this study aims to assess
the optimal b-value spacing in bi-exponential modelling of various tissue organs.

Methods Synthetic data simulating the MR signal decay of a bi-exponential system was created in Matlab (The
MathWorks Inc) using the following equation

Sy = So([1 = fle 2" + fe~PP")

where fis the perfusion fraction, D' is the pure diffusion coefficient, D* is the pseudo diffusion coefficient, b is the b-value,
and S, (Sp) is the signal at a b-value of 0 (b) s/mm®. Data was created for 4 tissue types using literature obtained
parameter values (brain: f=5%, D*=10um?ms, D'=1um?ms [1]; breast: f=10%, D*=15um?*ms, D'=1.15um*ms [2]; kidney:
=30%, D*=15um?/ms, D'=1.5um*ms [3]; liver: f=30%, D*=60um?/ms, D'=1um?/ms [4]). Gaussian noise was added to
produce data ranging from SNR=10:1 to SNR=1000:1. The simulated data was calculated using 10 b-values determined
from the Power Law formula where the " b-value is given by

i—1\"
b; = byin + (binax — Pmin) (m)
where b,n=0, bma=1000 s/mm? n=10, and r varied from 1 (linear spacing) to 5. For each combination of b-value
distribution, organ parameters and SNR level 1000 cases were generated. Bi-exponential fitting was performed using
simplex minimisation. Initial D' estimates were determined by a mono-exponential fit to b>500 s/mm? data points with initial
D* and f estimates based on extrapolation of this mono-exponential curve to b=0 s/mm?. Data was also fitted to a mono-
exponential model for comparison.

Results For the brain data bi-exponential fitting consistently overestimated the perfusion fraction fin all but the highest
SNR regimes with estimates of ~9.5% at SNR < 20 compared with the nominal value of 5%. Mono-exponential analysis
also provided a better fit (lower RMSE) in the low SNR regime. Similar results were obtained for breast synthetic data. For
tissues with a high perfusion fraction (liver and kidney) bi-exponential fitting consistently outperformed mono-exponental
fitting for all SNR values. Because of the rapid loss in signal from the perfusive component the optimal sampling strategy
occurred when r=3.0 (corresponding to b =0, 1.4, 11, 37, 87, 171, 296, 471, 702 and 1000 s/mmz) and above.

Discussion This work has demonstrated that bi-exponential fitting of synthetic DWI data is feasible using 10 b-values.
When a relatively small perfusive component fraction is present (<10%) a relatively high SNR in the DW images appears
to be necessary, otherwise a mono-exponential model provides a better fit. For tissues with a rapid (215um2/ms) and large
perfusive component (=30%) adequate sampling of low b-values using a non-linear spacing strategy is paramount for
accurate fitting. However, the use of very low b-values in imaging is often difficult, wherein imaging gradients may
contribute significantly to the ‘true’ b-value as compared to the inputted desired b-value. Future work will attempt to assess
the effect of imaging gradient contributions on the fitting methods developed.
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