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Introduction  Traditionally, ADC determination involves mono-exponential fitting of diffusion weighted imaging (DWI) 
data, thus potentially ignoring microperfusion contributions to the signal decay at low b-values. Recent work has 
demonstrated that it is technically possible to acquire DWI data of the brain [1] and other organs [2-6] with low b-values in 
an attempt to quantify this perfusive fraction of the ADC decay curve via bi-exponential modelling. However, large 
uncertainties in the fitted parameters have prevented the widespread adoption of this technique. Efforts to optimise the 
acquisition protocol have been made [7] and it appears evident that increased sampling at low b-values to adequately 
define the rapidly decaying perfusive weighted component is necessary. Adapting the work of Shrager et al [8], which 
investigated optimal time spacing for T2 measurements in mono- and bi-exponential systems, this study aims to assess 
the optimal b-value spacing in bi-exponential modelling of various tissue organs. 

Methods  Synthetic data simulating the MR signal decay of a bi-exponential system was created in Matlab (The 
MathWorks Inc) using the following equation ܵ௕ = ܵ଴൫ሾ1 − ݂ሿ݁ି௕஽ᇲ + ݂݁ି௕஽∗൯ 
where f is the perfusion fraction, D′ is the pure diffusion coefficient, D* is the pseudo diffusion coefficient, b is the b-value, 
and S0 (Sb) is the signal at a b-value of 0 (b) s/mm2. Data was created for 4 tissue types using literature obtained 
parameter values (brain: f=5%, D*=10μm2/ms, D′=1μm2/ms [1]; breast: f=10%, D*=15μm2/ms, D′=1.15μm2/ms [2]; kidney: 
f=30%, D*=15μm2/ms, D′=1.5μm2/ms [3]; liver: f=30%, D*=60μm2/ms, D′=1μm2/ms [4]). Gaussian noise was added to 
produce data ranging from SNR=10:1 to SNR=1000:1. The simulated data was calculated using 10 b-values determined 
from the Power Law formula where the ith b-value is given by 

ܾ௜ = ܾ௠௜௡ + ሺܾ௠௔௫ − ܾ௠௜௡ሻ ൬ ݅ − 1݊ − 1൰௥ 
where bmin=0, bmax=1000 s/mm2, n=10, and r varied from 1 (linear spacing) to 5. For each combination of b-value 
distribution, organ parameters and SNR level 1000 cases were generated. Bi-exponential fitting was performed using 
simplex minimisation. Initial D′ estimates were determined by a mono-exponential fit to b>500 s/mm2 data points with initial 
D* and f estimates based on extrapolation of this mono-exponential curve to b=0 s/mm2. Data was also fitted to a mono-
exponential model for comparison. 

Results  For the brain data bi-exponential fitting consistently overestimated the perfusion fraction f in all but the highest 
SNR regimes with estimates of ~9.5% at SNR < 20 compared with the nominal value of 5%. Mono-exponential analysis 
also provided a better fit (lower RMSE) in the low SNR regime. Similar results were obtained for breast synthetic data. For 
tissues with a high perfusion fraction (liver and kidney) bi-exponential fitting consistently outperformed mono-exponental 
fitting for all SNR values. Because of the rapid loss in signal from the perfusive component the optimal sampling strategy 
occurred when r=3.0 (corresponding to b = 0, 1.4, 11, 37, 87, 171, 296, 471, 702 and 1000 s/mm2) and above.  

Discussion This work has demonstrated that bi-exponential fitting of synthetic DWI data is feasible using 10 b-values. 
When a relatively small perfusive component fraction is present (≤10%) a relatively high SNR in the DW images appears 
to be necessary, otherwise a mono-exponential model provides a better fit. For tissues with a rapid (≥15μm2/ms) and large 
perfusive component (≥30%) adequate sampling of low b-values using a non-linear spacing strategy is paramount for 
accurate fitting. However, the use of very low b-values in imaging is often difficult, wherein imaging gradients may 
contribute significantly to the ‘true’ b-value as compared to the inputted desired b-value. Future work will attempt to assess 
the effect of imaging gradient contributions on the fitting methods developed. 
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