

Parallel Accelerated Imaging of Alveolar Partial Pressure of Oxygen

Stephen J. Kadlecik¹, Yinan Xu¹, Kiarash Emami¹, Yi Xin¹, Puttisarn Mongkolwisetwara¹, Hooman Hamedani¹, Harrison McAdams², Masaru Ishii³, and Rahim R. Rizi¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States, ³Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States

INTRODUCTION: Hyperpolarized (HP) gas MRI has been applied to regional measurement of various pulmonary parameters, including the alveolar partial pressure of oxygen (P_{AO_2}). As it directly relates the fundamental function of the lung, effective P_{AO_2} mapping would be a particularly interesting biomarker for lung disease diagnosis or staging. For a reliable measurement, however, a careful accounting of the interplay between RF- and oxygen-induced decay mechanisms is required. In this study, we investigate the potential for parallel imaging to more effectively decouple these two mechanisms, both to increase the fidelity of the oxygen map and to maximize subject tolerance, while understanding and minimizing any confounding effect of artifacts associated with accelerated image reconstruction. This project is based on earlier P_{AO_2} imaging timing scheme optimization [1] and similarly makes use of computational models, phantoms, feasibility is testing in a healthy human.

METHODS: The acquisition schemes evaluated in this study are shown in **Figure 1**. Fig. 1a depicts the fully-sampled scheme in which the entire tolerable breath-hold (in this case, just over 10 seconds) is used for sampling to achieve acceptable resolution. The shorter accelerated acquisition time allowed comparison of three different timing schemes (1.b-d) and examination of the tradeoff between fewer, high flip-angle acquisitions (1.b) and acquisition of more time-points (1.d). A fully-sampled image of a human lung and the associated P_{AO_2} and flip angle (α) maps were used as the best available ‘ground truth’ for computationally comparing the accuracy and precision of the parallel accelerated oxygen mapping process to that of the full k -space sampling. The simulation consisted of three parts: k -sampling of the original spin-density images in presence of O_2 and RF decay effects, image reconstruction using various acceleration factors and reconstructions, and the P_{AO_2} mapping process using the reconstructed images. Phantom experiments used a Tedlar bag filled with $^3He+N_2+O_2$ gas mixture and were conducted in order to verify trends uncovered by the simulation and to assess experimental error. Human experiments consisted of one healthy human subject who in a five-minute interval underwent two different P_{AO_2} imaging schemes: the fully-sampled and undersampled modes 1.a and 1.b (the latter was chosen based on its performance in phantom and simulation studies). All experiments were performed on a Siemens Sonata 1.5-T MRI system with a commercial volume transmit, 8-channel receive phased array RF Coil (Stark Contrast, Germany). The transmit coil was saddle-shaped, 45 cm long and 35 cm wide, and both coils were tuned to the 3He resonance frequency of 48.48 MHz. The phantom experiments utilized a gradient echo imaging pulse sequence with Cartesian sampling and the following parameters: FOV=30×30cm², TR/TE=6.8/3.25ms, and MS=64×64. Human imaging: FOV=40×40cm², 6 slices with anterior-to-posterior ordering, ST=20mm, TR/TE=6.8/3.25ms, and MS=64×64. For both the phantom and human studies shown, GRAPPA with an acceleration factor of 4 and 16 auto-calibration lines was used [2].

RESULTS: **Figure 2** shows an example set of simulation results representative of the conditions encountered in a

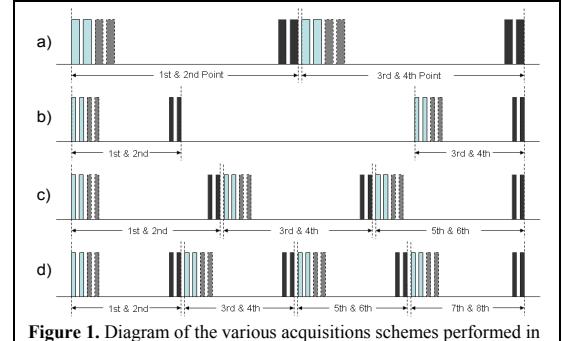
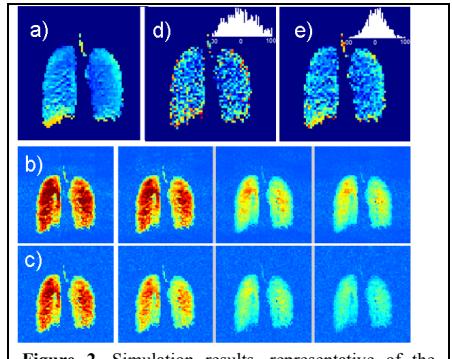

human experiment, in this case at a low average S/N of 20, which highlights the advantage of the accelerated scheme. Acceleration yields a greater overall S/N due to higher flip-angle and a correspondingly reduced deviation from the assumed ground truth. **Figure 3** summarizes phantom experiments which confirm this effect; repeated measurements in a bag with known pO_2 show a reduced average deviation (0.1% vs 5.0% for full sampling) and distribution width (7.1 vs 10.1% for full sampling) when using the four-point accelerated scheme of 1.b (red). For the human experiment, **Figure 4** shows the P_{AO_2} maps from two different 4-point acquisition schemes with full k -space acquisition ($\alpha = 5^\circ$) and accelerated acquisition ($\alpha = 7^\circ$), numerical results for which are highlighted in the figure

table.


DISCUSSION AND CONCLUSION: All three comparisons suggest that P_{AO_2} mapping can be made more accurate by using an accelerated imaging scheme, minimizing both the bias of the mean and the deviation from the true spatial pattern of P_{AO_2} . On the other hand, acquiring additional images during the time delay opened up by the reduced-duration accelerated imaging (schemes 1.c-d) does not appear to benefit P_{AO_2} estimation. One reason for the superiority of the accelerated scheme is that it distributes the fixed magnetization budget among a smaller number of excitations, concentrated toward the center of k -space, thereby maximizing S/N. In addition, it achieves the widest possible temporal separation between images within the subject-imposed breath-hold constraint. Three features are apparent from the human results: a strong gravity-induced gradient independent of imaging scheme, visual consistency between the schemes, and an overall narrower P_{AO_2} distribution obtained from accelerated acquisitions, suggestive of reduced deviation from a (likely fairly uniform) true P_{AO_2} distribution. It remains important, however, to account for various potential sources of error, including the effects of diffusion and gas flow, which may be easier if additional images are acquired and warrants further investigation in a larger number of subjects. The results so far suggest that parallel accelerated imaging, and presumably other image acceleration schemes, can provide a better platform for P_{AO_2} mapping compared to full k -space sampling through enhancement of O_2 -induced contrast, and spatial artifacts or blurring introduced by acceleration do not appear to adversely affect the estimate. Notably, simulation results suggest that the advantages of parallel, accelerated imaging disappear in the limit of high S/N in each image, but will be even more pronounced when S/N is especially limited, e.g., in hyperpolarized ^{129}Xe imaging.

REFERENCES

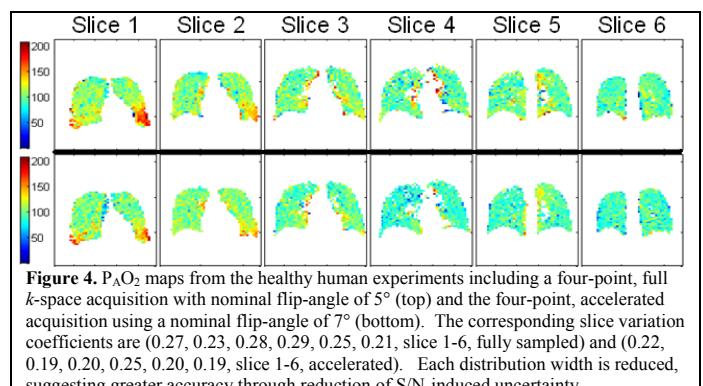

1. Fischer MC, et al. Magn Reson Med 2004;52(4):766-773; 2. Griswold MA, et al. Magn Reson Med 2002;47(6):1202-1210.

Figure 1. Diagram of the various acquisitions schemes performed in this study; fully sampled (a) and three accelerated schemes (b-d).

Figure 2. Simulation results, representative of the human experiments with S/N=20. Assumed ground truth signal intensity and P_{AO_2} (a) is reconstructed from an undersampled (b) or fully sampled (c) image series according to schemes 1.a-b. The higher flip-angle and longer time-base of the accelerated scheme yields a reduced deviation (e, histogram insert).

Figure 4. P_{AO_2} maps from the healthy human experiments including a four-point, full k -space acquisition with nominal flip-angle of 5° (top) and the four-point, accelerated acquisition using a nominal flip-angle of 7° (bottom). The corresponding slice variation coefficients are (0.27, 0.23, 0.28, 0.29, 0.25, 0.21, slice 1-6, fully sampled) and (0.22, 0.19, 0.20, 0.25, 0.20, 0.19, slice 1-6, accelerated). Each distribution width is reduced, suggesting greater accuracy through reduction of S/N-induced uncertainty.