

The Effect of Lung Inflation on the T_2^* of ^{129}Xe in the Human Lungs at 1.5 T and 3 T

Xiaojun Xu¹, Graham Norquay¹, Helen Marshall¹, Juan Parra-Robles¹, and Jim M. Wild¹

¹Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

Introduction: The T_2^* of gas in the lungs is largely affected by magnetic field inhomogeneity at tissue/air interfaces with a bulk susceptibility difference of $\Delta\chi \approx 9$ ppm.¹ Experiments in human lungs at 1.5 T have shown that the T_2^* of ^3He is about 60% larger during inspiration compared to at expiration.² The aim of this work was to investigate the influence of lung inflation level on the T_2^* of inhaled ^{129}Xe in the human lungs at 1.5 T and 3 T.

Materials and Methods:

Experiments were performed on whole-body clinical MR systems, a 1.5 T Signa HDx (GE, Milwaukee, WI, USA) and a 3 T Philips Achieva (Best, Netherlands). Flexible twin Helmholtz quadrature transmit-receive coils (CMRS, USA) were used at both field strengths. ^{129}Xe was polarised by Rubidium (Rb) spin exchange using a homebuilt regulatory-approved polariser system.³ After 30-40 minutes accumulation, the frozen xenon was then sublimated and collected in 300 mL doses in a 1 L Tedlar bag which was filled up with medical grade N₂ gas. The typical polarisation of the gas after thawing was 14%.⁴ An interleaved dual echo time 2D spoiled

gradient echo pulse-sequence was used for T_2^* measurement.⁵ Sequence parameters were 6 coronal slices of 30 mm thickness covering the whole lung, FOV of 38.4 cm, 64 x 64 matrix, BW 8 kHz, flip angle 7°. TE₁/TE₂ used at 1.5 T were 2.9 ms/18 ms, TE₁/TE₂ used at 3 T were 4.4 ms/ 11 ms. For the first scan, the volunteer was asked to inhale the 1 L bag of ^{129}Xe gas from a state of full expiration and hold his breath after inhalation (Fig. 1 (a)). In the second scan, the volunteer was asked to top up to total lung capacity by inspiration of room air after the bag inhalation (Fig. 1 (b)).

Results and Discussion: T_2^* histograms from all slices from both volunteers from the first scan (forced residual volume (FRV) + 1 L), (40 years old male, 88 kg, 41 years old male, 88 kg) are shown in Fig. 2 ((a) and (c)) with median values of 25 ± 13 ms and 18 ± 6 ms at 1.5 T and 3 T, respectively, showing reproducibility. The uncertainty was measured as the FWHM of the histogram. These values are shorter than the only other previously reported values in the conference literature⁶; however, the results from the measurements at TLC coincide with ref. [6] with median values of 52 ± 20 ms and 24 ± 11 ms at 1.5 T and 3 T, respectively. This is shown in Fig. 2 ((b) and (d)) as histograms of all slices, indicating a dependence of the transverse relaxation constant T_2^* on lung inflation volume, which has previously been observed with ^3He .¹ In this state of inflation, ^{129}Xe in the lungs also demonstrates a pseudo-static dephasing regime, with linear dependence of relaxation rate on B_0 as observed for ^3He .⁵ **Conclusion:** In this study, the transverse relaxation time, T_2^* of inhaled ^{129}Xe gas was demonstrated to be dependent upon lung inflation level, with a stronger dependence at the higher field strength of 3 T. This is as expected given the stronger field inhomogeneity at higher B_0 . The strong dependence of T_2^* on inflation at 3T suggest that it could be a quantitative metric of alveolar geometry in emphysema. Even though imaging with the lungs at TLC incurs a SNR loss through gas dilution, the longer T_2^* potentially counters this effect by enabling a narrower bandwidth, which can lead to higher SNR, as predicted by theory.⁷

References: ¹Chen et al., MRM. 42(4):729-737 (1999); ²Deppe et al., Proceedings to ISMRM, Stockholm, Sweden (2010); ³Parnell et al., JAP 108:064908 (2010).

⁴Norquay et al, Proceedings to British Chapter ISMRM, Manchester (2011); ⁵Deppe et al., JMRI 30(2):418-423 (2009); ⁶Mugler, III, et al., Proceedings to ISMRM, Hawaii, US (2009). ⁷Parra-Robles et al., Med Phys 32(1):221-229 (2005). **Acknowledgements:** EPSRC. EP/D070252/1. (1)

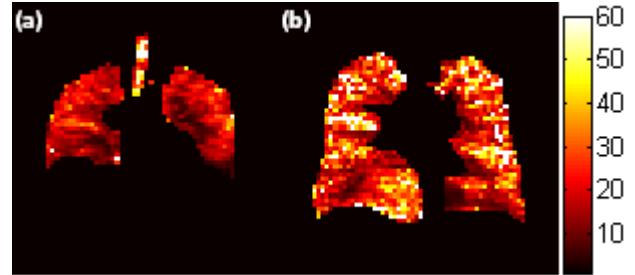


Figure 1. T_2^* maps of a single slice of a healthy volunteer (41 years old, 88 kg) in ms at 3 T at FRV + 1L (a) and TLC (b).

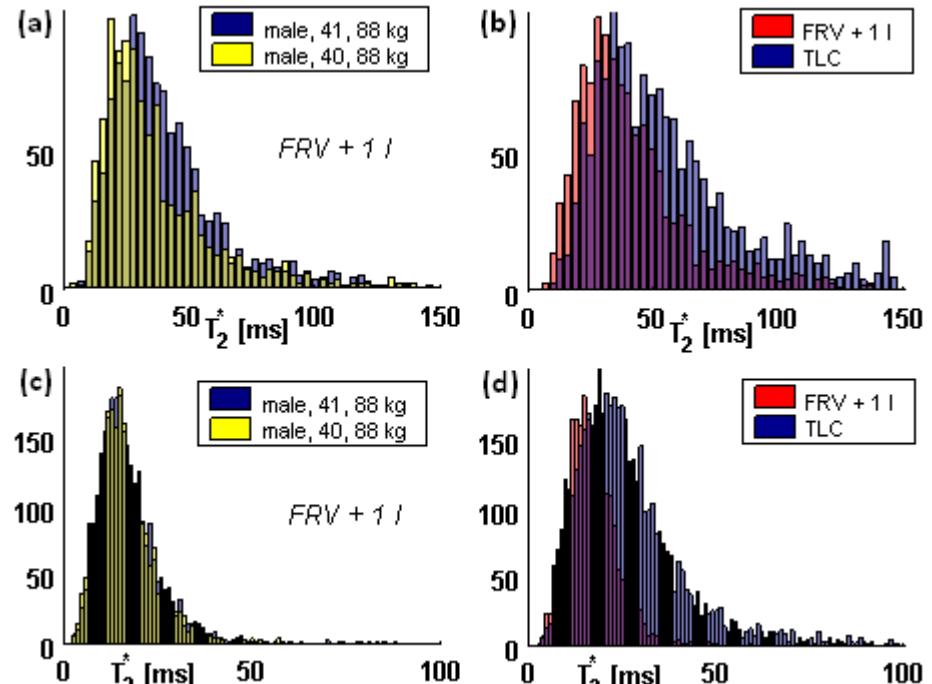


Figure 2. The distribution of T_2^* of two healthy volunteers (40 years old, 88 kg; 41 years old, 88 kg) as measured from all coronal lung slices with hyperpolarised ^{129}Xe at B_0 field strengths of 1.5 T (a) and 3 T (c) showing reproducibility at FRV + 1 L; as well as the distribution of T_2^* while imaging at forced residual volume (FRV) + 1 L and total lung capacity (TLC) as measured from all coronal slices at B_0 field strengths of 1.5 T (b) and 3 T (d) of one healthy volunteer (41 years old, 88 kg).