Optimal Conditions for Accelerated Imaging of Fractional Ventilation with Hyperpolarized Gas MRI
Kiarash Emami', Yinan Xu', Hooman Hamedani', Harrilla Profka', Yi Xin', Puttisarn Mongkolwisetwara', Stephen J. Kadlecek', Masaru Ishii%, and Rahim R. Rizi'
'Radiology, University of Pennsylvania, Philadelphia, PA, United States, *Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United
States

INTRODUCTION: Pulmonary ventilation is an important marker in obstructive lung diseases, and its non-invasive imaging can provide useful information to
investigate the severity of lung diseases and their response to intervention. Hyperpolarized gas MRI provides a noninvasive platform to directly image distribution of
respiratory gas at a high resolution. However quantitative imaging of ventilation still remains as one of the least developed areas using this imaging modality. An
improved technique for fractional ventilation () imaging was developed by authors [1] based on earlier work of Deninger, et al. [2], and was further adapted to large
species (with pulmonary volumes comparable to humans) using accelerated imaging [3]. This work investigates optimal conditions for performing such measurements
using parallel accelerated imaging.

METHODS: The multi-slice fractional ventilation imaging sequence is shown in Figure 1, for the case T
of three slices. Accelerated imaging was performed using parallel MRI and image reconstruction was
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noise was added to the k-space signal. The spin density at each time point ARG . - .
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sensitivity profile. The accelerated acquisitions were performed using
ACL=8-32 and AR=2-4. Images from coils were reconstructed using GRAPPA algorithm and combined to obtain a single image for the corresponding time point, as
shown in Figure 2. The effective acceleration factor of 64/Npg is calculated according to a given pair of ACL and AR: Np;=ACL+(64—ACL)/AR pulses. The resulting
images was then fit to the fractional ventilation model to yield maps of ¢ and r. Results were evaluated by: (/) RMS difference between the estimated and reference r»
maps, and (i) correlation coefficient R for the voxel-by-voxel linear regression between the two maps.
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successfully implemented in pigs under mechanical ventilation as reported earlier [3]. A

representative set of results is shown in Figure 4.

DISCUSSION AND CONCLUSION: In contrast to the single imaging voxel, it is evident that undersampling cannot indefinitely improve r accuracy, and there is a
limit beyond which the information loss due to undersampling (e.g. reconstruction artifacts) outweighs the gain in reducing RF pulses and acquisition time. For
assessment of accuracy of accelerated ventilation imaging, the normalized RMS error UA,/JAM min, not only reflects the effect of the number of RF pulses and noise,
but also incorporates the inaccuracy introduced by undersampled image reconstruction artifacts. The minimum error condition for each (ACL,AR) pair also represents
the corresponding optimal flip angle, ¢ (not shown for brevity). It should be emphasized that this analysis only pertains to this representative case, and optimality
conditions, in general, will be a function of other experimental details, including the number of parallel coils, imaging resolution, and achievable SNR.

Large species, humans included, breathe over a respiratory time scale of a few seconds (typical 4-8 sec breathing cycle at rest). Rodents have a respiratory rate of up to
10 times faster. The slower breathing rate of larger species means that certain signal decay mechanisms will longer be negligible in HP gas ventilation signal buildup.
(e.g. the oxygen depolarization effect (T, ;s vvo = 18 8) induces a more prominent signal attenuation over the experimental time scale). Therefore in addition to
diminishing the RF effect in » estimation, acceleration shortens the breath-hold time necessary to acquire the images, thereby reducing the overall time and the
associated O2-induced decay.
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