

Creatine Kinase-Overexpression Improves Adriamycin-induced Dysfunction and *in vivo* ATP kinetics in Murine Hearts

Ashish Gupta¹, Cory Rohlfson¹, Missy Leppo¹, Vadappuram P Chacko², Yibin Wang³, and Robert G Weiss¹

¹Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, United States, ²Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University, Baltimore, MD, United States, ³University of California, Los Angeles, CA, United States

SYNOPSIS: Adriamycin (ADR) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Impaired energy metabolism may contribute to contractile dysfunction in human heart failure and may play a role in ADR-induced cardiotoxicity. We overexpressed the myofibrillar isoform of creatine kinase (CK-M), the major cardiac energy reserve reaction, to test the hypothesis that increasing CK-M expression would improve energy metabolism and, in turn, improve contractile function in dysfunctional ADR hearts. ¹H MRI and ³¹P MRS results reveal that CK-M overexpression improves depressed CK energetics and cardiac dysfunction in ADR hearts.

INTRODUCTION: Adriamycin (ADR) is an antineoplastic agent often used for advanced solid tumors and several hematopoietic malignancies. However, ADR's therapeutic application is limited in part by adverse effects on cardiac function¹⁻². There is some evidence that ADR adversely affects mitochondrial function³⁻⁶ but there is no *in vivo* information on its impact on creatine kinase (CK), the prime energy reserve of the heart. Improving CK metabolism in ADR-induced cardiotoxicity by increasing CK expression is a logical means to test this hypothesis because reduced CK metabolism has been linked to human and experimental HF⁷⁻⁸. We created mice conditionally and cardiac-specifically overexpressing the myofibrillar isoform of CK (CK-M-OE), the most abundant isoform, and administered ADR to them and non-transgenic littermates in a regimen previously shown to induce cardiotoxicity and contractile dysfunction⁹. We quantified the *in vivo* metabolic and contractile consequences of CK-M-OE in ADR hearts with ¹H MRI/³¹P MRS.

MATERIALS AND METHODS: Experiments were carried out on a Bruker Biospec MRI/MRS spectrometer equipped with a 4.7T/40cm Oxford magnet, as previously described⁹. Intra-peritoneal injection of ADR (5mg/kg) was administered once a week for five weeks as described previously⁹. *In vivo* ¹H MRI was performed at 6 and 8 weeks, and ³¹P MRS was performed at 7 weeks after ADR or placebo administration, on placebo-treated control (n=6), ADR-treated control (n=10 at 6wk); (n=8 at 8wk), and CK-M-OE placebo-treated (n=6) and CK-M-OE ADR-treated (n=7) mice. Multi-slice cine MR images were acquired of the entire left ventricle (LV) to assess LV mass, ventricular volumes and ejection fraction (EF)⁹. The *TRiST* method¹⁰ was used to measure CK flux from $[PCr]x(k_f)$, where k_f (CK pseudo-first order rate constant). [PCr] and [ATP] were evaluated *in vivo* as described previously¹¹. Results are presented as mean \pm SD. Comparisons of MRI- and MRS-derived measures of LV anatomy, function and metabolism among multiple groups were analyzed by one way ANOVA and pair wise comparisons were performed with the Tukey test.

RESULTS: A representative ¹H image and spatially-localized *TRiST* ³¹P spectra are shown in Fig.1. CK-M overexpression did not alter baseline contractile function. However at 7 wk of ADR the mean PCr/ATP ratio, [PCr], k_f and CK flux were significantly reduced in ADR-treated hearts and this was associated with contractile dysfunction with significant reductions in EF and SV (Table 1).

In contrast, PCr/ATP, k_f and CK flux were significantly higher in CK-M-OE hearts receiving ADR than in control (Table 2). Importantly, after 8 weeks the EF and SV were significantly higher in CK-M-OE ADR mice than in control ADR mice (Table 1). Thus CK-M-OE improves depressed energetics in ADR hearts and this is associated with significant improvements in contractile function.

DISCUSSION: First, we observe that not only is cardiac PCr/ATP reduced after ADR, as previously reported³, but that for the first time [PCr], k_f and CK flux are significantly reduced during ADR administration. Second, CK-M overexpression increases the rate of ATP synthesis through CK (CK flux) in placebo hearts but has no effect on PCr/ATP, [PCr] and [ATP] (Table 2) or on contractile function (Table 1). Third, critically, CK-M overexpression improves cardiac energetics in ADR hearts and improves ADR-induced contractile dysfunction (Tables 1 & 2). Metabolic strategies, in particular those targeted at improving CK energy metabolism, promise a new avenue for treating or preventing cardiac dysfunction associated with ADR and thereby may allow continued or higher dose administration of this life-saving drug for some patients with malignancy.

REFERENCES: (1) Lefrak EA. et. al. Cancer 1973;32:302-14. (2) Swain SM. et. al. Cancer 2003; 97: 2869-79. (3) Bugger H. et. al. Cancer Chemother Pharmacol 2011; 67:1381-88. (4) Diotte NM. et. al. Biochim Biophys Acta 2009; 1793: 427-38. (5) Tokarska-Schlattner M. et. al. Mol Pharmacol 2002; 61: 516-23. (6) Brdiczka DG. et. al. Biochim Biophys Acta 2006; 1762: 148-63. (7) Smith CS. et. al. Circulation 2006; 114:1151-1158. (8) Weiss RG. et. al. PNAS 2005; 102:808-813. (9) Maslov MY. Am. J. Physiol Heart Circ Physiol. 2010; 299:H332-37. (10) Gupta A. et. al. Circ. Cardiovasc. Imaging. 2010; 4:42-50. (11) Gupta A. et. al. Am. J. Physiol Heart Circ Physiol. 2009; 297:H59-64.

Table 2	PCr/ATP	[PCr] $\mu\text{mol/g}$	[ATP] $\mu\text{mol/g}$	k_f s^{-1}	CK _{flux} $\mu\text{mol/g/s}$
Control	1.92 \pm 0.15	9.94 \pm 1.5	4.81 \pm 1.0	0.32 \pm 0.03	3.16 \pm 0.47
Control ADR (7wk)	1.53 \pm 0.13 ^{*,\\$}	6.94 \pm 0.5*	3.74 \pm 0.2	0.27 \pm 0.01 ^{*,\\$}	1.90 \pm 0.11 ^{*,\\$}
CK-M overexp	1.96 \pm 0.02	8.47 \pm 2.0	4.21 \pm 0.9	0.54 \pm 0.09*	4.49 \pm 1.20*
CK-M ADR (7wk)	1.88 \pm 0.14	8.50 \pm 0.5	3.61 \pm 0.2	0.46 \pm 0.04 ^{*,\\$}	3.88 \pm 0.44

^{*,} p<0.05 with compared to control, [§], p<0.05 with compared to CK-M overexp [†], p<0.05 with compared to CK-M ADR (7wk)

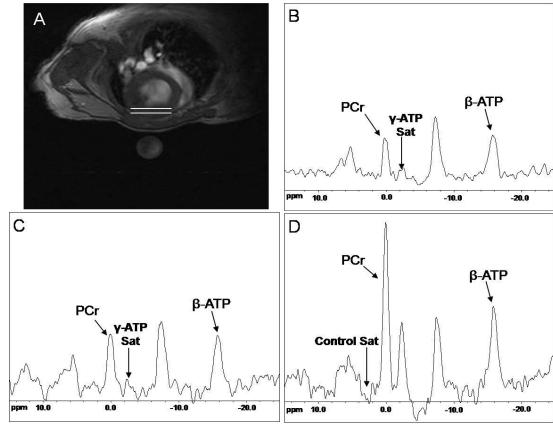


Fig.1: (A) Typical transverse ¹H MR image of a mouse thorax with ³¹P MR cardiac voxel denoted by white lines (B) ³¹P MR spectrum with γ -phosphate of ATP saturation with TR=1.5s, NEX=96, (C) γ -phosphate ATP saturation with TR=6s, NEX=32, and (D) control saturation spectrum with TR=10s and NEX=16. PCr; phosphocreatine, β -ATP; β -phosphate of adenosine triphosphate

Table 1	SV, μl	EF, %
Control	43.4 \pm 4	66.5 \pm 2
Control ADR (6wk)	43.4 \pm 5	60.1 \pm 4
Control ADR (8wk)	36.2 \pm 3*	51.7 \pm 7 ^{*,\\$,\#,\#,\\$}
CK-M Overexp	46.0 \pm 4	66.7 \pm 3
CK-M ADR (6wk)	40.8 \pm 4	61.8 \pm 5
CK-M ADR (8wk)	38.9 \pm 7	61.8 \pm 3

[§], p<0.05 with compared to control, ^{*}, p<0.05 with compared to ADR treated control (6wk), [†], p<0.05, with compared to CK-M overexp, ^{\#}, p<0.01 with compared to ADR treated CK-M (6wk), ^{\\$}, p<0.01 with compared to ADR treated CK-M (8wk)