

## Evaluation of Cardiac Amyloidosis with T<sub>1</sub> Mapping

Michael Salerno<sup>1,2</sup>, and Christopher M Kramer<sup>3,4</sup>

<sup>1</sup>Internal Medicine, University of Virginia, Charlottesville, Va, United States, <sup>2</sup>Radiology, University of Virginia, Charlottesville, VA, United States, <sup>3</sup>Radiology, University of Virginia, Charlottesville, VA, United States, <sup>4</sup>Internal Medicine, Cardiology, University of Virginia, Charlottesville, VA, United States

**Introduction:** Amyloidosis is a systemic clinical disorder characterized by extracellular deposition of insoluble fibrillar proteins in multiple organ systems including the heart. Cardiac involvement is present in up to 90% of patients with the most common form of the disease, and 50% of patient have heart failure as their first presenting symptom [1]. CMR is becoming a key modality for non-invasive evaluation of cardiac amyloidosis, and a diffuse pattern of delayed enhancement (DE) and reduced T<sub>1</sub> post gadolinium contrast have been associated with poor outcomes [2]. When the T<sub>1</sub> of the myocardium is similar to that of the blood pool the diagnosis can sometimes be uncertain by conventional DE imaging. Post contrast T<sub>1</sub> measurements have been useful, but they are affected by multiple factors such as timing after gadolinium (Gd) administration, and renal clearance. Determination of the partition coefficient ( $\lambda$ ) or volume of distribution (V<sub>d</sub>) of Gd has been applied to detect diffuse cardiac fibrosis in multiple cardiac pathologies, but has not been applied to quantitative evaluation of extracellular protein deposition in cardiac amyloidosis in patients. The goal of this project was to use a modified MOLLI T<sub>1</sub> mapping technique before and after gadolinium administration to determine  $\lambda$  and V<sub>d</sub> of gadolinium and to compare these values to those of normal subjects. We hypothesize that these parameters will be markedly elevated in amyloidosis due to the expansion of the extracellular space and will provide a quantitative assessment of cardiac amyloidosis.

**Methods:** T<sub>1</sub> mapping was performed in 5 subjects (63±9 years) with suspected cardiac amyloidosis as part of their clinical evaluation and in 7 healthy volunteers (50±10 years) on a 1.5T MR scanner (Magnetom Avanto, Siemens Healthcare) using a modified 3-5 MOLLI pulse sequence consisting of 2 inversions and 3 recovery beats between inversions. Images were acquired in 3 subsequent heartbeats following the first inversion, and in the 5 heartbeats following the second inversion resulting in 8 images acquired over 11 heartbeats. Typical MOLLI sequence parameters included: TE/TR/FA 1.1 ms/2.5 ms/35°, FOV= 340 x 260, resolution 1.8 mm x 1.8 mm, thickness 8 mm. T<sub>1</sub> was determined pre-contrast and approximately 20 minutes following injection of 0.15 mmol/kg Gd-DTPA. Hematocrit (Hct) was measured in all volunteers, and the Hct closest to the day of the CMR study was used for the amyloid patients. T<sub>1</sub> maps were calculated and manually segmented using an in-house MATLAB program.  $\lambda$  was determined from the slope of a plot of 1/T<sub>1</sub> of the myocardium versus 1/T<sub>1</sub> of the blood. V<sub>d</sub> was calculated as  $\lambda^*(1-Hct)$ . Values were compared between groups using 2-tailed unpaired t-tests.

**Results:** Amyloid was confirmed by biopsy in 3 subjects (1 renal, 2 heart) and suggested by elevated plasma light-chains in the setting of heart failure and diffuse LGE by CMR in the other two subjects. Figure 1 shows T<sub>1</sub> maps pre and post contrast from a representative normal control and the five subjects with cardiac amyloidosis. Table 1 shows a comparison of the T<sub>1</sub> mapping parameters between the amyloid patients and normal subjects. The T<sub>1</sub> of the blood pool is significantly higher in amyloid patients both pre and post contrast, and the T<sub>1</sub> is significantly increased in the myocardium pre-contrast. These parameters are roughly 10-20% higher than that of the normal controls. The  $\lambda$  and V<sub>d</sub> are significantly increased in the amyloid patients, and these parameters are increased by 75% and 82% as compared to the normal subjects.

**Conclusions:** The  $\lambda$  and V<sub>d</sub> of Gd are significantly increased in patients with amyloid reflecting the increased extracellular space which is occupied by amyloid proteins. These parameters have not been utilized previously in the clinical evaluation of cardiac amyloidosis and may provide an index of overall disease burden. Furthermore, we demonstrated significant increases in T<sub>1</sub> pre-contrast in both the myocardium and blood pool in amyloid patients. This may potentially aid in the diagnosis of cardiac amyloid in patients who cannot receive Gd-DTPA due to renal insufficiency. Further research is warranted to see if  $\lambda$  and V<sub>d</sub> can predict adverse outcomes in cardiac amyloidosis.

### References

- [1] Selvanayagam JB et al, JACC, 50(22):2101-10, 2007
- [2] Maceira et al. JCMR, 10:54, 2008

**Acknowledgements:** Research support from Siemens Healthcare

Table 1: Comparison of T<sub>1</sub> mapping parameters

|                          | Amyloid (n=5) | Controls (n=7) | P value |
|--------------------------|---------------|----------------|---------|
| T <sub>1</sub> LV pre    | 1773±133      | 1509±85        | 0.03    |
| T <sub>1</sub> myo pre   | 1144±49       | 962±42         | <0.001  |
| T <sub>1</sub> LV post t | 485±18        | 408±42         | 0.002   |
| T <sub>1</sub> myo post  | 503±61        | 544±36         | 0.15    |
| $\lambda$ Gd             | 0.78±0.18     | 0.44±0.01      | 0.01    |
| V <sub>d</sub> Gd        | 0.51±0.09     | 0.28±0.01      | 0.005   |

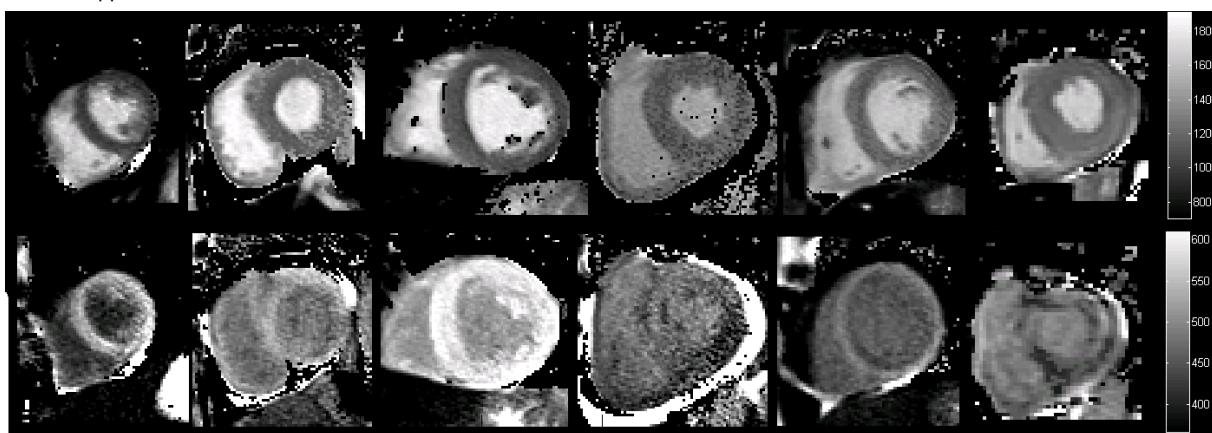



Figure 1: T<sub>1</sub> images pre contrast (top row) and post contrast (bottom row) from a normal subject and the 5 subjects with cardiac amyloidosis. The corresponding V<sub>d</sub> are 0.29, 0.49, 0.36, 0.55, 0.51, and 0.63 respectively