Kinetic Analysis of DCE-MRI in Head and Neck by Using the Dynamic Tracer Concentration in Jugular Veins
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Introduction: Plasma concentration-time curve (CTC) in arteries, or the arterial input function (AIF), is important for accurate DCE-MRI kinetic analysis.
However, accurate AIF determination is often hampered by the severe in-flow effect and the associated reduction in the measured T1 values [1]. In this study,
we proposed the use of dynamic tracer concentration in veins for head and neck (HN) DCE-MRI kinetic analysis to compensate for the arterial in-flow effect.
Although veins are blood collecting but not feeding vessels in physiology, the dynamic tracer concentration in veins should be equal to that in arteries because
blood plasma can be considered as a single pool for high velocity flows with low permeability between the plasma and the extra-vascular space [2]. For HN,

the blood flow in the jugular veins is much slower than that in the carotid
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arteries. Meanwhile, the flow in the jugular veins is usually relatively
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steady during the heart cycle with less pulsation. The slow and steady flow

in the jugular veins should, in principle, offer the advantages of the g = E
reduction of susceptibility to in-flow effect. ;"’““ g
Methods: 23 patients with HN tumors received DCE-MRI at 3T, with & #o}, 2

T1w spoiled gradient echo sequence. Informed consents were obtained.
Gd-DOTA (0.1mmol/kg) was injected intravenously at 2.5mL/s, followed
by a 20-ml saline flush. TR/TE=3.9ms/0.9ms, FA=15°, FOV=230mm,

—Slice 8 |
—Slice9

matrix=128x128, slices/thickness=25/4mm, dynamics =185, and temporal
resolution =2.59s/dynamic. Pre-contrast baseline images were acquired
with a flip angle of 7°. T1 maps were calculated by using the
dual-flip-angle method [3].Vessel voxels for arteries and veins were
extracted by using an automated extraction program by the criteria of peak
intensity and time [4]. CTCs in arteries and veins were calculated using
the literature arterial and venous blood T1 of 1550ms and 1852ms at 3T.
Hematocrit was set as 0.42. kep, K™, v, and v, by using CTCs in arteries
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. . . Fig.1. The ITCs and CTCs for artery and vein voxels in central slices
and veins were compared for primary tumors (PTs) and metastatic nodes. £ i

Results: The averaged dynamic intensity-time curves (ITCs) (Fig.1la&b) and CTCs (Fig.1c&d) for artery and vein voxels in central slices were extracted.
Pronounced inter-slice differences in baseline, peak and wash-out level were found for artery voxels, while the ITCs and CTCs for vein voxels were much
consistent. The derived kinetic parameters by using the CTCs in arteries and veins were compared for PTs and metastatic nodes (Fig.2). Significant
overestimation (p<0.001, t-test) were found in K", v, and v, for both PTs and nodes by using the CTCs in arteries, while k., showed no significant
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difference (p>0.05). Tofts model fittings on a PT by using the extracted
CTCs for each slice (Fig.1c&d) were also compared to the results by using
the slice-averaged CTCs as a reference (Fig.3). Fig. 6a&b show the percent
errors by using the extracted CTCs in arteries and veins respectively. Large

trans

deviations over 50% were found in the estimations of K™", v, and v,
especially by the use of CTCs from the inferior slices (slices 8-12). As
comparison, the fitting results by using the individual CTCs in veins were
much more stable and consistent. The parameter deviation were all <35%
from the reference. No significant parameter differences were found by the
use of vein CTCs between slices.

Discussion: Note that the applicability of the proposed method may not be
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and consistent kinetic parameter estimations were achieved by using the vein
CTCs compared to artery CTCs for HN DCE-MRI.

3
a

2.5

0.5

9 Ktrans(1/min) kep(1/min)

I CTCs in artery
I CTCs in vein

ve VP

Ktrans(1/min) kep(1/min)

b

N CTCs in artery
I CTCs in vein

ve vp

Fig.2. Kinetic parameters estimates in PTs and nodes by using CTCs in arteries and veins
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Fig. 3 Tofts parameter deviation by using the CTCs in arteries (a) and veins (b) from each slice
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