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Introduction: 
In diffusion MRI (dMRI), one method used for modeling multiple fiber orientations in regions with complex microstructure is 
spherical deconvolution [1]. This produces a fiber orientation distribution function (fODF). Most often, this function represents a 
superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle). By parameterizing these peaks 
one may be able to disentangle and separately characterize these bundles. In this line, the fODF peaks were approximated by Bingham 
distributions [2,3,4], which were scaled to the size of the respective maximum and capture second-order statistics of the fiber 
orientations. Using a geometry-based fitting approach we approximated the three largest peaks of the fODF, which correspond to the 
three largest fiber populations within the voxel. These were then used for deriving measures for fiber properties, which can be 
assigned to distinct fiber populations within each voxel. 
 
Methods: 
High resolution dMRI scans were acquired on a Siemens 3T TIM Trio 
scanner (1.5mm isotropic, 60 directions, b=1000s/mm², 32-channel 
array head coil, GRAPPA 3, AV=3) from a healthy subject and on a 
Siemens 3T VERIO scanner (1.7mm isotropic, 60 directions, 
b=1000s/mm², 32-channel array head coil, GRAPPA 2, AV=1) from a 
tumor patient. We performed a 6th order spherical harmonic 
approximation of the fODF. This was done using the diffusion 
attenuation signal and a corresponding kernel function estimated from 
voxels with an FA value of 0.8 or greater. Assuming each of the fODF 
maxima represents a single fiber peak, we estimated the parameters of 
a scaled Bingham distribution modeling the underlying fiber bundle. 
As the fODF represents the angular density of fibers, its integral over 
the sphere corresponds to the total number of fibers per voxel, thus 
approximating spatial fiber density. Interestingly, the first coefficient of 
the spherical harmonics, analogously to the Fourier transform, 
corresponds to the integral of the function over the unit sphere, thus 
approximating spatial fiber density as well. The separation into scaled 
Bingham distributions now allows us to estimate the integral of each 
underlying fiber population separately. This leads to a measure, which states how much of the total fiber density can be explained by 
the separate fibers contained within each voxel. 
 

Results: 
The Bingham distribution can closely approximate the peaks of the fODF. The scaling 
parameter of the distribution quantifies the relative contribution of the different compartments 
and from this the integral over the scaled Bingham distribution can easily be derived. The two 
concentration parameters of the Bingham distribution characterize the peak anisotropy and 
provide a measure for the spread of fiber compartments revealing either a circular shape of the 
distribution e.g. in the corpus callosum, or a fanning of the fibers of the major peak, as, e.g.,  
in the internal capsule. The first spherical harmonic coefficient of the fODF was used as a 
measure for the spatial fiber density. In order to quantify this measure we examined the fODF 
within a tumor brain. As expected the density within the tumor as well as in the surrounding 
oedema is significantly lower than in the white matter. In order to use this measure for 
quantification a more complex diffusion model is necessary. The representation of the fiber 
populations by Bingham distributions allowed for the representation of measures for each 
fiber bundle separately, thereby describing the influence a single bundle has on the measure. 
 
Conclusions: 
The approximation of single-fiber peaks using a Bingham distribution supplies a powerful 
tool for parametric quantification of fiber bundle properties which might replace measures 

derived from the diffusion tensor (e.g. FA) in areas of crossing fibers. Combination with properties of the fODF enables separating the 
influences these single bundles have on a measure. For more accurate results there are two major improvements we are currently 
working on, first dealing with the problem of overlap of the fitted Bingham distributions, second incorporating a more complex 
diffusion model, which accounts for the interdependence between T2 relaxation (thus b0) and the diffusivity. 
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Figure 2: The integral of the fODF over 
the unit sphere, which approximates the 
spatial fiber density, is shown in this 
image of a tumor brain. 

Figure 1: The grey glyph in the background depicts the fODF. The 
maximum direction is shown as a red line. The green areas show the 
peak neighborhood of the maximum used for fitting. The fitted 
Bingham distribution is shown in blue. 
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