Multi-directional anisotropy obtained from the diffusion propagator
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Introduction: Diffusional anisotropy is a key parameter of interest in the study of brain disorders. In conventional diffusion tensor imaging (DTI)
[1], fractional anisotropy (FA) [2] measures the extent of diffusivity along the principal direction relative to the perpendicular directions, yielding a
gauge of axonal integrity. However, DTI-FA assumes a single diffusion tensor, and hence does not adequately describe the general case of multiple
components and directionalities, as seen in voxels with crossing-fibers, partial-volume effects and in gray matter.

Methods: As compared to a single diffusion tensor (Fig. 1a), the number of directions in a crossing-fiber maybe inferred from the number of peaks in
the orientation distribution function (ODF, or V), but requires knowledge of the diffusion propagator (Fig. 1b), which can be determined using

diffusion spectrum imaging (DSI) [3]. In addition, the ratio between the minimal and maximal values
from an ODF may be an indication of multi-fiber diffusional anisotropy. An ODF-based multi- (a)

directional anisotropy (MDA) metric is proposed, defined as MDA = (1-u)/4/1+2u° , where

H= (min‘. ¥,/max; ¥, )2/3 . It can be shown that MDA is analytically equivalent to FA if (i) a single

diffusion tensor and (ii) equal perpendicular diffusivities (D,=D;) are assumed.
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metric is shown to be equivalent to FA in single- Fig. 3. Plots of FA or MDA vs. absolute angle between two fibers in 6000 double-fiber simulations of

fiber voxels, but is superior to FA in double-fiber equal diffusivity (simulated individual FA = 0.9 shown by red line) for (a-b) DTI and (c) DSI that also
voxels. The lower SNR associated with longer TEs show clustering of MDA with fiber direction count (N).

in DSI may result in reduced MDA in highly
anisotropic regions (FA > 0.8). While ODF-based Count MDA
generalized FA had also been proposed [5], a F -

correlation between MDA and FA is now shown.
CS-acceleration of DSI should allow fiber direction
count and MDA to be obtained in a clinical setting
for multi-parametric analysis of anisotropy in
crossing-fiber and gray matter regions.
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