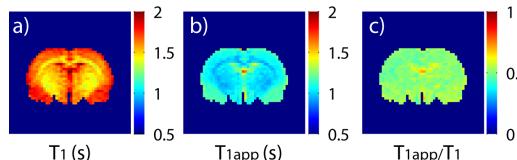
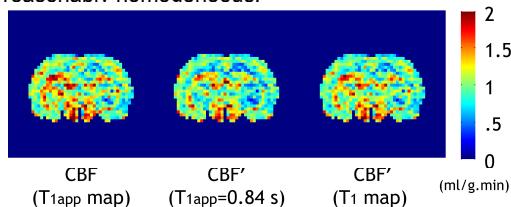


Measurement of multi-slice cerebral blood flow with T1-normalized arterial spin labeling MRI using a volume RF labeling coil

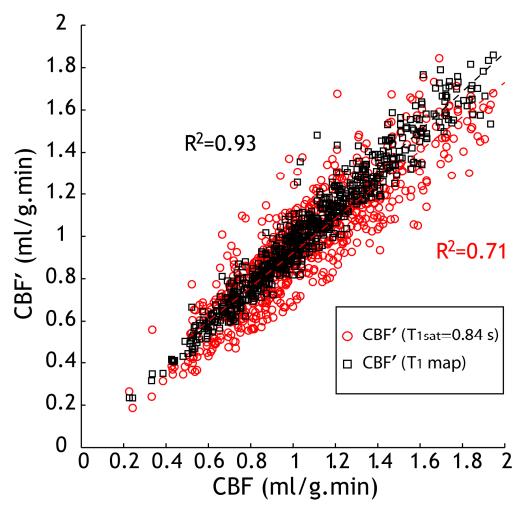
Phillip Zhe Sun¹, Enfeng Wang¹, Xiaoan Zhang², and Jerry S Cheung¹


¹Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States, ²Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University, ZhengZhou, He Nan, China, People's Republic of

Introduction Arterial spin labeling (ASL) MRI tags arterial spins as endogenous tracer and the signal change is sensitive to CBF¹⁻³. However, the RF tagging pulse may also attenuate tissue signal through magnetization transfer (MT), direct RF saturation and off-resonance spin locking effects, particularly when a volume RF coil is used. Importantly, ASL MRI contrast scales with $T_{1\text{app}}$, the apparent T_1 under the RF tagging pulse, which varies with its amplitude and offset⁴⁻⁵. Nevertheless, a single $T_{1\text{app}}$ value is often used for CBF calculation. As $T_{1\text{app}}$ map is heterogeneous, such a global $T_{1\text{app}}$ approach may be oversimplified for mapping regional CBF.


Materials and Methods Animal experiments were carried out in accordance with institutional guidelines. MRI was obtained at 4.7 Tesla. We obtained single slice $T_{1\text{app}}$ (slice thickness = 3mm) and T_1 MRI with an inversion recovery sequence using identical recovery time in 10 adult male Wistar rats. We had $B_1=4.7 \mu\text{T}$, a labeling distance of 15 mm ($\Delta\omega=10,000 \text{ Hz}$), modulation frequency of 250 Hz, and post-labeling duration of 300 ms. In addition, CBF was obtained with amplitude modulated (AM)-ASL (TR/TE=6,500ms/28ms, NA=32) in two Wistar rats⁶⁻⁷. CBF was calculated as $\text{CBF}=\lambda \cdot (I_{\text{ref}}-I_{\text{tag}})/(2\alpha \cdot I_0) \cdot C$, where I_{ref} and I_{tag} are image intensities when RF labeling and reference pulses are applied, respectively, and I_0 is control image without RF irradiation. In addition, λ is the brain/blood partition coefficient, α is the inversion efficiency. In addition, $C=e^{\delta/T_1a} \cdot T_{1\text{app}}$, and $\lambda=0.9 \text{ ml/g}$ and $\alpha=0.65$.

Results and Discussion Fig. 1 shows single-slice T_1 , $T_{1\text{app}}$ and $T_{1\text{app}}/T_1$ maps of a representative normal animal. T_1 and $T_{1\text{app}}$ maps were heterogeneous, being $1.56 \pm 0.15 \text{ s}$ and $0.83 \pm 0.09 \text{ s}$ ($B_1=4.7 \mu\text{T}$ and $\Delta\omega=10 \text{ kHz}$), respectively. Despite their spatial heterogeneity, the parametric $T_{1\text{app}}/T_1$ map was reasonably homogeneous, being 0.53 ± 0.02 . Ventricle appeared hyperintense, likely caused by cerebral spinal fluid (CSF) partial volume effect. We found T_1 , $T_{1\text{app}}$ and $T_{1\text{app}}/T_1$ to be $1.55 \pm 0.03 \text{ s}$, $0.84 \pm 0.01 \text{ s}$ and 0.54 ± 0.01 , respectively ($n=10$).


Fig. 2 compares the single-slice CBF map calculated from $T_{1\text{app}}$ map, single $T_{1\text{app}}$ value ($T_{1\text{app}}=0.84 \text{ s}$) and the scaled T_1 map ($T_{1\text{app}}=n \cdot T_1$ with $n=0.54$), respectively. In addition, CBF' calculated from a single $T_{1\text{app}}$ value and T_1 map were found to be 0.98 ± 0.31 and $1.02 \pm 0.31 \text{ ml/g} \cdot \text{min}$, respectively. Whereas the CBF values were reasonably close to one another, subtle difference in the CBF map can be detected. This is because by using the mean $T_{1\text{app}}$, CBF calculated from the single $T_{1\text{app}}$ value can approximate the mean CBF measurement from the $T_{1\text{app}}$ map and scaled T_1 map, it may not fully account for $T_{1\text{app}}$ heterogeneity-induced regional CBF difference. This can be better appreciated in Fig. 3, which is an overlaid scatter plot of CBF and CBF', per voxel. The proposed T_1 -map-normalized CBF' closely correlated with the $T_{1\text{app}}$ -map-normalized CBF (black square), where $\text{CBF}'=0.92 \text{ CBF} + 0.04 \text{ ml/g} \cdot \text{min}$ and the coefficient of determination R^2 is 0.93. In comparison, the correlation between CBF' calculated using the single $T_{1\text{app}}$ value and CBF (red circle) was $\text{CBF}'=0.81 \text{ CBF} + 0.12 \text{ ml/g} \cdot \text{min}$, $R^2=0.71$.

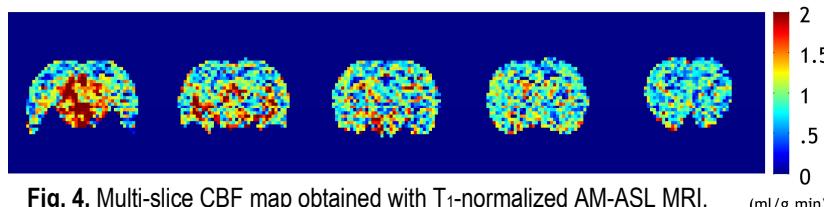

Fig. 1. Comparison of T_1 , $T_{1\text{app}}$ and $T_{1\text{app}}/T_1$ maps. Whereas T_1 and $T_{1\text{app}}$ ($4.7 \mu\text{T}$, $\Delta\omega=10 \text{ kHz}$) maps show noticeable heterogeneity, $T_{1\text{app}}/T_1$ map is reasonably homogeneous.

Fig. 2. CBF map obtained with scaled T_1 -map better characterizes regional CBF than that with a global $T_{1\text{app}}$ value.

Fig. 3. CBF calculation using scaled T_1 map ($R^2=0.93$, black square) better correlates with the approach of a single $T_{1\text{app}}$ value ($R^2=0.71$, red circle).

Fig. 4. Multi-slice CBF map obtained with T_1 -normalized AM-ASL MRI.

References

- 1) Bose et al. Stroke 1988;19:28-37.
- 2) Williams D et al. PNAS 1992;89:212-6.
- 3) Zhang et al. MRM 1992;25:362-71.
- 4) Zaharchuk NCNA 2011;21:285-31.5)
- 5) Ewing JR et al. JMRI 2005;22:737-40.
- 6) Alsop et al. JCBFM 1996;16:1236-49.
- 7) Utting et al. MRM 2005;54:594-604.