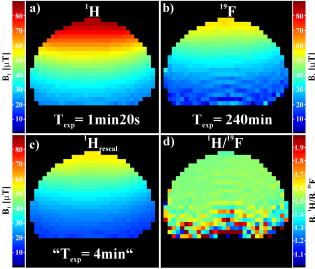
Fast, indirect assessment of the ¹⁹F B₁ profile by ¹H Bloch-Siegert B₁ mapping using double-resonant ¹H/¹⁹F coils

Thomas Christian Basse-Lüsebrink¹, Volker Jörg Friedrich Sturm¹, Anna Vilter¹, Thomas Kampf¹, Volker Christian Behr¹, and Peter Michael Jakob¹ ¹Experimental Physics 5, University of Würzburg, Würzburg, Bavaria, Germany

Introduction

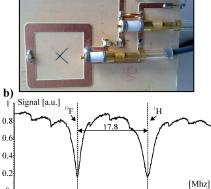
Due to ¹⁹F properties such as high sensitivity, unambiguous localization of labeled cells and direct quantification, the a) MR community has regained great interest in ¹⁹F MRI (1,2). For these applications surface coils are often used (1,2) due to the low SNR in ¹⁹F images. Since an inhomogeneous B₁ profile is inherent with surface coils quantification of the ¹⁹F signal is hampered and thus strategies to map the ¹⁹F B₁ profile are of great interest. Importantly, doubleresonant coils provide comparable B_1 profiles for both nuclei and allow simultaneous detection (3).

Bloch-Siegert based B_1^+ mapping was recently introduced by Sacolick et al. (4). Furthermore, it was shown that fast spectroscopic BS-based methods can be used for flip-angle calibration (5) even with x-nuclei (6).

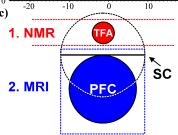

The present study shows that ¹⁹F B₁ profiles of a double-resonant surface coils can be assessed using fast ¹H BS B₁ mapping.

Materials and Methods

Experiment Setup: Since different coil sensitivities might occur for both nuclei when double-resonant surface coils are used the B₁ ratio of both nuclei must be known. Thus, fast spectroscopic BS-CPMG B₁ (7) scans of both nuclei were obtained from a small external reference with comparable 1HJ19F distributions. With the help of the spectroscopically obtained ¹H/¹⁹F B₁ ratio, fast ¹H BS-CPMG B₁ mapping could be used to derive the ¹⁹F B₁ map. Hardware: A square surface coil with a side length of 30mm was constructed (Fig.1a). To obtain double-resonance, the strategy using a birdcage coil proposed in Reference 1 was adapted. Thus, the surface coil was coupled with a secondary resonator located in the tuning and matching network. The resonance frequencies were adjusted to allow operation at 7T ($^{1}\text{H} \sim 300 \text{ MHz}$, $^{19}\text{F} \sim 282 \text{MHz}$). MR experiments were performed on a 7T small animal scanner. BS Parameters: BS-CPMG-MSE NMR/MRI experiments for both nuclei were performed. Gaussian-shaped offresonant pulses were used for encoding the BS phase. The BS pulse duration was set to 1ms and the same BS pulse amplitude was chosen for both nuclei. Moreover, the off-resonance of the BS pulses was set to = ± 16 kHz. The B₁ information was calculated as described in References 4,7.


NMR: A tube containing trifluoroacetic acid (TFA) diluted in H₂O was used as spectroscopic ¹H/¹⁹F reference (Fig.1c). Spectroscopic BS experiments based on the BS-CPMG-MSE method presented in Reference 7 were preformed (TE/TR = 20/2500ms, NE = 36, Spectral points = 512, NA = 32, T_{explH/19F} = 1min20s). Using slice selective pulses, only the ¹H/¹⁹F signal from the TFA reference was acquired (Fig.1c).

MRI: A 1H/19F phantom was used for imaging that contained a perfluoro-15-crown-ether (PF15C) emulsion (Fig.1c). For B_1 mapping the following MRI parameters were chosen: Echo time/Repetition time (TE/TR_{1H}/TR_{19F}) = $\frac{1}{\text{Fig.1a}}$ Picture of the double-resonant surface coil. b) Exemplary 10/2500/3500ms; Echo Images (NE) = 36; Matrix Size (MTX) = 32x32; Field-of-View (FOV) = 30x30mm². Slice with universe of the coil presented in a. c) The scheme illustrates Thickness (ST) = 12mm; Averages (NA) $NA_{1H}/NA_{19F} = 1/128$, $T_{exp1H}/T_{exp19F} = 1min20s/240min$.



References

- [1] Hu L. et al., ISMRM, V.18, p. 1502 (2010)
- [2] Weise G. et al, Exp Neurol. (2011);229:494-501
- [3] Keupp J. et al., Magn. Reson. Med. (2011);66:1116-1122
- [4] Sacolick L.I. et al., Magn. Reson. Med. (2010);63:1315-1322

20

the positions of surface coil (SC), the TFA reference and the PFC emulsion phantom. Furthermore, the dashed lines show the excited area in the NMR (red) and the MRI (blue) experiments.

Results

Fig.1b, shows that the coil could be successfully adjusted to both frequencies. In Fig.2a, the B₁⁺ profile of the coil in the PF15C emulsion phantom at the ¹H resonance frequency is shown. Different B₁⁺ values were obtained for the ¹⁹F resonance frequency (Fig.2b); however, the relative sensitivity pattern was comparable as seen from the ratio of the two B₁ however, the relative sensitivity pattern was comparative as seen norm maps (Fig.2d). Thereby, the spatial derived ${}^{1}H/{}^{19}F$ B₁ ratio was ~ 1.51 .

This factor is in very good agreement with the ratio obtained from the selective, spectroscopic BS-MSE experiments (~ 1.52). Furthermore, the proposed spectroscopic BS-CPMG-MSE sequence allowed the acquisition of both BS-phase states necessary for quantifying both B₁ values in a single echo train (data not shown). Fig.2c shows the B₁ map obtained from the ¹H data rescaled by the spectroscopically derived ¹H/¹⁹F B₁ ratio. The rescaled 1H B_1 map aggress very well to the ^{19}F B_1 map (Fig.2b). Furthermore, the noise influence in the rescaled 1H B_1 map is weaker compared to the ^{19}F B_1 map.

Discussion and Conclusion

Due to the often low SNR in ¹⁹F images direct assessment of the ¹⁹F B₁⁺ profile is normally impossible. The present study solves this issue by using fast ¹H BS-B₁⁺ mapping to assess the inhomogeneous ¹⁹F B₁⁺ profile of a double-resonant ¹H/¹⁹F surface coil. Thus, it was shown that acquiring additional spectroscopic ¹H/¹⁹F BS-CPMG data from a reference tube allows rescaling of the ¹H sensitivity profile to match the values of the ¹⁹F sensitivity profile. Thereby, it is important that the ¹H/¹⁹F distributions in the reference are comparable to minimize deviations in the spectroscopic BS data due to spatial B₁ variations of the coil.

Fig.2 Results from the MRI experiments of the PF15C emulsion phantom. a) B_1^+ map calculated from the ^{1}H data. b) B_1^+ map calculated from the ^{19}F data. c) ^{19}F B_1^+ map calculated from the acquired ^{1}H data rescaled by the spectroscopically obtained $^{1}H/^{19}F$ B_1 ratio. d) Image showing the ratio of the ^{1}H and ^{19}F B_1^+ maps.

- [5] Sacolick L.I. et al., Magn. Reson. Med. (2011);66:1333-1338
- [6] Schulte R.F. et al., NMR Biomed. (2011); 24:1068-1072
- [7] Sturm V.J.F. et al., ISMRM, V.19, p. 4413 (2011)

Acknowledgements:

This work was supported by the DFG SFB 630 (B5) and SFB 688 (B1,B5,Z2) projects.