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Introduction: Detecting pathologies in small intracranial arteries could potentially help in the diagnosis and treatment of cerebral small vessel diseases, such as lacunar 
stroke. However, visualizing small intracranial arteries using standard clinical 3-T MR scanners is challenging, as it requires acquiring high-resolution and high signal-
to-noise ratio (SNR) MR angiography images, while maintaining reasonable acquisition time. Recent advances in image reconstruction from sparsely sampled k-space 
data, such as compressed sensing1 (CS) and parallel MR imaging2-5 (pMRI), provide potential solutions to enable acquisition of higher resolution MRA datasets without 
increasing the total acquisition time. In this study, we investigated and compared SENSE2, GRAPPA3, CS1, SPIRiT4, CS-SENSE5, and L1-SPIRiT4 reconstructions to 
accelerate time-of-flight (TOF) MR imaging. These techniques have different sampling requirements; therefore, we expect the sparse sampling methodology to be a 
function of the reconstruction technique. By tailoring the sampling strategy to the reconstruction method, we hypothesize that the optimum sampling/reconstruction 
combination will enable visualizing small intracranial vessels. 
Methods: I. Data Acquisition: All imaging experiments were performed in a healthy volunteer using a 3-T MR scanner (Discovery 750; General Electric Healthcare, 
Waukesha, WI) and a 12-channel head coil. We used a clinical 3D TOF vascular sequence to acquire fully sampled k-data with TR = 25 ms, TE = 3.7 ms, flip angle of 
15º, acquisition matrix size = 256 × 192 × 64, and FOV = 256 × 192 × 6.4 cm3. The k-data were then transferred to a workstation for offline processing. II. Data 
Undersampling: We simulated 4-fold accelerated acquisitions by undersampling the phase encodes in the 
ky-kz plane of the fully sampled k-data. To satisfy the CS requirement of incoherent aliasing interference, we 
randomly selected the phase-encode locations based on a probability density function1 (PDF). For the 
GRAPPA, SPIRiT, and L1-SPIRiT undersampling approaches, we fully sampled a region (24×24 pixels) at 
the origin of k-space and used it to calibrate the kernel weights. We applied the same sampling scheme for 
the SENSE approach and used the fully sampled central region to calculate the sensitivity maps. To satisfy 
the L1-SPIRiT requirements, we sampled the data using a Poisson-Disk distribution6. For the CS-SENSE 
approach, we simulated a 2× undersampled SENSE acquisition in the ky direction, coupled with 2× 
undersampling of the ky-kz phase encode plane for CS (i.e., total acceleration factor of 4). III. Data 
Reconstruction: We reconstructed each ky-kz slice using SENSE, GRAPPA, CS, SPIRiT, CS-SENSE, and 
L1-SPIRiT. For the CS reconstruction, we used both the wavelet transform and total variation as sparsifying 
domains and adjusted the regularization parameters accordingly through visual inspection of the 
reconstructed images. For the SENSE reconstruction, we calculated the sensitivity maps by first dividing 
the low-resolution coil images by a reference image obtained via the sum-of-squares of the low-resolution 
images, and then fitting a fourth-order polynomial to the data. We reconstructed the SENSE images with 
the conjugate gradient method. The SPIRiT and L1-SPIRiT reconstructions were performed as described by 
Lustig4. The CS-SENSE reconstruction was carried out sequentially5, i.e., we first reconstructed the aliased 
images using CS and then used SENSE to unfold the final composite image. IV. Reconstruction 
Assessment: We quantitatively assessed the reconstructed TOF source images by measuring the root-mean-
square error (RMSE) at different locations between the accelerated images and the fully sampled reference 
image. The stacks of reconstructed images were also qualitatively assessed by visually comparing 
maximum intensity projections (MIP) of the whole data volumes. Close attention was paid to how well the 
small intracranial arteries were depicted in terms of conspicuity and feature detail. 
Results: Figure 1 shows maps of absolute errors between a fully sampled TOF source image and the 
corresponding accelerated images. Overall, the CS reconstruction yielded less accurate images (highest 
RMSE values) than the other methods. CS performed particularly poorly in regions with sharp edges, i.e., 
regions with high frequencies. However, it performed the best in homogeneous regions, 
i.e., regions with low frequencies. The SENSE and CS-SENSE reconstructions performed 
better than CS in terms of RMSE, but they suffered from visible fold-over artifacts in the 
final composite images. The GRAPPA, SPIRiT, and L1-SPIRiT reconstructions provided 
similar results, however SPIRiT consistently yielded the lowest RMSE values. Figure 2a 
shows the MIP rendered image from the coronal view of the fully sampled TOF data. The 
arrows indicate the locations of two visible lenticulostriate arteries. Figure 2b shows an 
enlarged and rotated view of the lenticulostriate artery as given by the arrow with a star in 
Figure 2a. Figures 2c-2f show the enlarged views corresponding to the different 
accelerated reconstructions. Qualitative comparison of these MIP images reveals that the 
reconstructions involving an L1-norm regularization procedure (i.e., CS, CS-SENSE, and 
L1-SPIRiT) resulted in lower aliasing interference, but also less conspicuous small 
intracranial vessels due to blurring. The SPIRiT and GRAPPA reconstructions best 
depicted the lenticulostriate arteries. 
Discussions: Although the CS reconstruction significantly reduced the background noise 
(i.e., aliasing interference) in the MIP images, it could not depict the small arteries as 
reliably as the other approaches. A possible explanation is that forcing sparsity in the 
wavelet domain introduces some blurring in the reconstructed images. This blurring arises 
from the inherent property of the wavelet transform to concentrate most of the energy at 
the coarsest scale coefficients, which are closely related to the low frequencies of k-data. 
Thus, forcing sparsity in the wavelet domain tends to preserve coarse scale coefficients 
(corresponding to low frequencies) and discard detail scale coefficients (corresponding to 
high frequencies). The quality of the SENSE reconstruction highly depends on the 
accuracy of the sensitivity maps, and is thus vulnerable to magnetic field 
inhomogeneities/susceptibilities. In general, the SENSE reconstruction yielded accurate 
images. However, in slices with air-tissue interfaces, the difference of susceptibilities led 
to inaccurate sensitivity maps and resulted in significant fold-over artifacts in the final 
composite image. The auto-calibrating techniques, i.e., GRAPPA, SPIRiT, and L1-SPIRiT, 
exhibited less sensitivity to susceptibilities artifacts and most reliably depicted the 
lenticulostriate arteries.  
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Figure 1: Maps of absolute normalized errors between a
fully sampled TOF source image and the corresponding
accelerated images. 

Figure 2: MIP rendered images: (a) coronal view of the fully sampled TOF
data showing two lenticulostriate arteries, (b-h) enlarged and rotated
views of the region as given by the arrow with a star corresponding to the
different reconstructions. Acknowledgement: David Gobbi for the MIP
visualization software. 
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