Automated muscle fat segmentation in DTI data of post-polio patients based on parameter distirbutions
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Introduction: Patients with post-polio syndrome
have increased or new muscle weakness in addition
to their sequelae ™. There is little known about the
precise mechanism of the progression of this disease
and its impact on muscle architecture. Similarly there "> . Il
is not much known about the effect of therapeutic SN N T s : ";3 ]
interventions on muscle architecture. A technique * Fig 1: Probability histograms of A, A, and A3 with the fitted skew normal probability density functions. Blue -
that could bring more insight into the pathogenesis Fat compartment; Red - Muscle compartment; Green - Combined muscle and fat

and the effect of therapy on individual muscles is diffusion tensor imaging *. A A
complication is that these patients suffer from severe muscle atrophy and the muscles
are partially or completely replaced by fat which hinders the diffusion imaging. One
would like to make a distinction between healthy and affected muscles and also
investigate if the fat-infiltrated muscles show organized structures and thus differ from
the subcutaneous fat. The aim of this work was therefore to develop a fully automated
algorithm for segmentation of healthy and fat-infiltrated muscle based on the distribution
of the diffusion tensor imaging parameters.

MRI: Both upper legs of a male healthy volunteer and a post-polio patient were
measured using a 3T Philips Intera scanner with a 16 channel coil. Three acquisitions
were performed: T1 and T2 weighted imaging for assessing muscle damage and
anatomical reference and diffusion tensor imaging (DTI). The data was acquired in three
40 slice stacks with a 5 slice overlap and a FOV of 400x400 mm? and slice thickness of 4
mm. Total scan time was 45min. Further imaging parameters were; T1w: TSE, voxel
size: 0.8x0.8 mm? TR/TE: 760/16 ms, NSA: 2, T2w: TSE, voxel size: 0.8x0.8 mm?
TR/TE: 5500/70 ms, NSA: 2, DTI: SE-EPI, voxel size: 3.125x3.125 mm?, 15 diffusion
gradient directions, TR/TE: 7500/36 ms, NSA: 2, b=400 s/mm?, fat suppression: SPAIR,
SENSE factor: 1.4.

Methods: From the DTI images the diffusion tensor is computed after which the tensor
eigenvalues (A1, A2 and A;), the mean diffusivity (MD) and the fractional anisotropy (FA)
were calculated. The proposed algorithm consisted of the following steps. First a
probability density histogram of the entire dataset was made for each of the five diffusion " Fig 2: T1 weighted images (lefl) together with the segmentea
A X . K . N compartment masks overlaid on the un-weighted diffusion image
parameters. These histograms were used to fit a probability density function which (right). A and B are images of the healthy volunteer and C and D are
consisted of two skew normal distributions, one to describe the muscle compartment and images of the post-polio patient. Blue represents the muscle
the second to describe the fat-infiltrated muscle compartment. Next the cumulative compartment. vellow the fat compartment and red the residual voxels.
probability of each voxel belonging to the muscle compartment was calculated. This probability map was then spatially homogenized by a minimum
variance filter that preserves edges. A threshold probability was chosen to segment the muscle compartment. This step is the only user input needed for
the algorithm. For resulting voxels the same steps are repeated but then for the probability of them belonging to the fat compartment. These steps result
in three segmented compartments: muscle, fat and residual voxels together with an initial guess of the fat fraction and the mean diffusion parameters of
the muscle and fat compartment. Whole volume fiber tractography was performed on the segmented compartments. Tracking stopped at an angle
change of 15 degrees per 0.2 voxel integration step and tracts had a minimal length of 50mm.

Results and Discussion: Figure 1 show the probability density function fit on the histogram of the entire dataset of the post-polio patient for the three
eigenvalues. Figure 2 shows the result of the segmentation for both the healthy volunteer as well as the post-polio patient. Figure 3 A and B shows
whole volume fiber tractography of the segmented muscle compartment for the healthy volunteer. Fiber tractography was not possible in segmented fat
compartment as expected. In figure 3 C and D whole volume | o o 3
tractography for the post-polio patient is shown. Here fiber : i
tractography in the segmented fat compartment was possible and
revealed organized fiber structures in fat infiltrated muscles in the
left leg, which on T1 weighted images only showed remnants of
skeletal muscle.

Conclusion: With the proposed algorithm it was possible to
perform a fully automated fat and muscle compartment
segmentation. In the case of the post-polio patient the healthy

muscles could be identified. However, fat-infiltrated muscles A Fig 3: A and B whole volume fiber tractography of the healthy volunteer (A: posterior view; B:

which have the same diffusion parameters as subcutaneous fat anterior view). C and D whole volume fiber tractography of the post-polio patient (A: posterior
still showed organized structures. view; B: anterior view), fiber tracts in the segmented fat compartment are shown in blue.
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