

Increased Myelin Content Correlates with the Longer T₂ Times of the Intra-/Extra-cellular Water in White Matter Structures

Bretta Russell-Schulz¹, Cornelia Laule^{2,3}, David Li³, and Alex MacKay¹

¹Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, ²Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, ³Radiology, University of British Columbia, Vancouver, BC, Canada

Introduction

The T₂ decay curve from central nervous system tissue can be separated into several exponential components. In normal brain tissue, the T₂ decay curve typically has a short T₂ component (T₂ ~ 20ms), arising from the water trapped within the myelin layers (MW); an intermediate T₂ component (T₂ ~ 80ms) from intra- and extra-cellular water (IE), and a very long T₂ component (T₂ > 2s) from cerebrospinal fluid [2]. Whittall *et al.* [2] found the ranking of white matter structures from highest to lowest MW signal fraction, and highest to lowest IE geometric mean T₂ (gmT₂), agreed (highest to lowest: posterior limb of the internal capsule, splenium of corpus callosum (CC), major forceps, genu of CC and minor forceps). In the current study the relationship between MWF and IE gmT₂ was examined in more detail. We examined a non-biological explanation for this relationship (the effects of the fitting algorithm on IE gmT₂ in the presence of increasing MWF) as well as a biological cause for the observed association (exchange between MW and IE water).

Methods

Subjects: Fourteen normal healthy subjects were examined; (mean age=27years (range=19-34); 6 males and 8 females).

MR Imaging: Imaging was conducted at 1.5T (GE Echo Speed v.5.7 software). The MR protocol consisted of a localizer, proton density (PD)-weighted and T₂-weighted images (TR=2500ms, TE=30/80ms) and a modified Carr-Purcell-Meiboom-Gill T₂ relaxation sequence (48 echoes, 5mm thick axial image acquired through the base of the genu/splenium of the corpus callosum, TR=2.12-3.8s [4,5], echo spacing = 10ms (first 32 echoes), = 50ms (last 16 echoes), 128x128 matrix, 4 averages).

Data Analysis: Regions of interest (ROIs) were drawn around different white matter structures (Figure 1). The T₂ decay curves were decomposed into an unspecified apriori number of exponentials using a non-negative least squares (NNLS) fitting algorithm (AnalyzeNNLS) [6]. The myelin water fraction (MWF) was defined as the area under the MW peak divided by the total area under the T₂ distribution for each ROI; the MW range was T₂=5ms-25ms (to exclude IE water contamination from WM structures with very broad IE peaks). The position of the IE peak was examined using the gmT₂ (mean T₂ on a logarithmic scale, T₂=25ms-600ms). The relationship between IE gmT₂ and MWF was examined by a linear regression for all structures together and each structure individually. Errors reported are the standard errors. A Students t-test determined if the slope for all structures and each individual structure was significant. The p-values for the comparison of IE gmT₂ and MWF in individual structures were Bonferroni corrected (p < 0.00625), otherwise p < 0.05 was considered to be significant. Simulations were run to examine the effects of the NNLS fitting algorithm on IE gmT₂ and MWF. The Zimmerman and Britten [6] two-pool exchange model was fit using 'no exchange' input values of myelin water T₂ (T_{2MW}) = 15ms, IE water T₂ (T_{2IE}) = 117ms and MWF = 0.195.

Results The IE gmT₂ and MWF showed a moderate correlation of R² = 0.3771 (p = 9.61x10⁻²²) across all ROIs examined. Linear regressions of IE gmT₂ versus MWF for each structure individually are given in Table 1. It appears that the same relationship between IE gmT₂ and MWF does not hold for every structure. The CST and splenium of CC had the highest slopes of all structures and were the only structures that showed a significant individual relationship between IE gmT₂ and MWF. A strong correlation between average IE gmT₂ and average MWF for each structure was found, R² = 0.7319 (p = 6.75x10⁻³), see Figure 2. In the NNLS simulations, increasing MWF by a factor of 10 resulted in a decrease in IE gmT₂ of about 2ms, while in the experimental data the same change in MWF resulted in an increase of IE gmT₂ from 65ms to 100ms (not shown). The exchange model could be made to fit the data, see Figure 3.

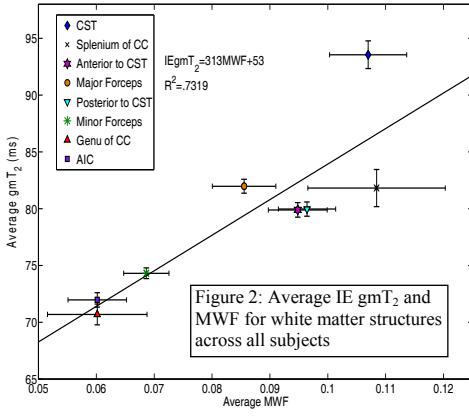


Table 1: Results of linear regression analysis between IE gmT₂ and MWF

Structure	Slope (ms)	R ²	p-value
All Structures	146 ± 13	0.3777	9.61 × 10⁻²²
Average	313 ± 77	0.7319	6.75 × 10⁻³
CST	136 ± 77	0.5555	5.35 × 10⁻⁶
Splenium of CC	96 ± 29	0.4835	0.0058
Major Forceps	65 ± 26	0.1966	0.018
Anterior to CST	42 ± 23	0.1122	0.081
Posterior to CST	47 ± 23	0.1401	0.050
Genu of CC	29 ± 28	0.0870	0.31
Minor Forceps	33 ± 23	0.0772	0.15
AIC	54 ± 22	0.1822	0.024

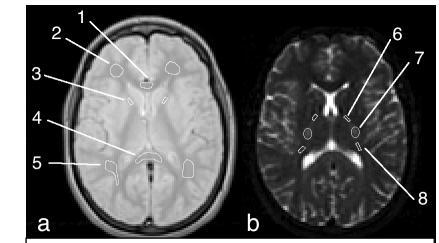


Figure 1: (a) PD image showing different ROIs 1) genu of CC, 2) minor forceps 3) AIC 4) splenium of CC and 5) major forceps. (b) Heavily T₂-weighted image TE=230ms 6) Anterior to CST 7) CST 8) Posterior to CST.

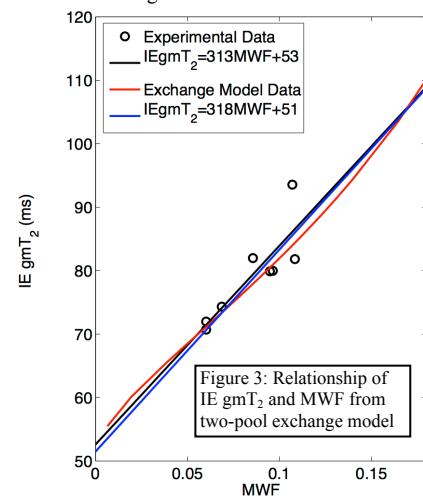


Figure 3: Relationship of IE gmT₂ and MWF from two-pool exchange model

Discussion/Conclusion

Increased MWF is accompanied by increased IE gmT₂ across white matter structures. This relationship did not appear to be the result of the NNLS fitting algorithm. The exchange model fitted our data, however the predicted T₂ times were unrealistically short (5ms). An alternative biological explanation could be increased extracellular water in structures with larger MWF; the CST is already known to have large clear spaces that could imply large amounts of extracellular water and large axons with thick sheaths [1].

References

1. Yagishita, A *et al* Radiology, 1994
2. Whittall, K.P., *et al*. Magn Reson Med, 1997
3. Sirrs, S.M., *et al*. Neuroradiology, 2007
4. Skinner MG *et al*. Magn Reson Imaging, 2007
5. Laule, C., *et al*. Magn Reson Imaging, 2007
6. Bjarnason, TA *et al*. Mag Res, 2010
7. Zimmerman, J., *et al*. J Phys Chem, 1957