

Assessment of R_2^* in primary colorectal cancer: Reproducibility and sequential changes following chemoradiation in relation to DCE-MRI parameter changes.

Vicky J Goh¹, N. Jane Taylor¹, Aftab Khan², J James Stirling¹, Ian C Simcock¹, Robert Kozarski³, Robert Glynne-Jones², James A d'Arcy⁴, David J Collins⁴, and Anwar R Padhani¹

¹Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ²Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ³University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom, ⁴CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research & Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom

BACKGROUND: Intrinsic susceptibility weighted MRI (ISW-MRI) provides information on the oxygenation status of the blood volume. The aim of this study was to assess the reproducibility of R_2^* and sequential changes following chemoradiation therapy (CRT), in relation to perfusion changes shown by dynamic contrast enhanced MRI (DCE-MRI).

METHODS: Following institutional review board approval and informed consent, 14 patients underwent ISW-MRI and 3D DCE-MRI at 1.5T using the following parameters: ISW - TR 100ms, TE 4.76 to 61.93 ms, NEX 2, FOV 260mm, 256² acquisition matrix, slice thickness 5mm, total 6 slices (R_2^* : s^{-1}); DCE-MRI TR 6.6ms, TE 1.22ms, flip angles 3° (PDW) and 21° (T1w) NEX 1, FOV 260mm, 256×174 acquisition matrix, slice thickness 5mm, 12 slices (6 usable), TA: 6m 25s (extended Tofts model; IAUGC₆₀ (mmol.s) and K^{trans} (min^{-1})). Imaging was repeated at baseline (Day 1 and 2) to allow reproducibility assessment and at the following time points after chemoradiation (45 Gy in 25 fractions; capecitabine 850 mg/m²): within 2 weeks of treatment completion, 6 weeks post and 11 weeks post (just prior to surgery). Parametric images were calculated using MRIW and DiffusionView software (Institute of Cancer Research, UK). Regions of Interest were drawn on the DCE-MR images by an experienced radiologist and transferred onto the R_2^* images. Reproducibility was assessed by Bland-Altman statistics. Changes in R_2^* were assessed by Wilcoxon rank test. Correlation between R_2^* and K^{trans} was assessed by Spearman's rank correlation; two-tailed significance at 5%.

RESULTS: Imaging was successful at baseline (reproducibility) in 14/14 (100%), in 13/14 (92.9%) immediately post-treatment, in 11/14 (78.6%) at 6 weeks and in 9/14 (64.3%) patients at 11 weeks. Baseline R_2^* values for the cohort are summarised in Fig. 1. The mean difference and 95% limits of agreement were $-0.15s^{-1}$ and -6.15 to $6.22s^{-1}$ respectively, within-subject coefficient of variation 8.5%, and repeatability coefficient $r = 23.5\%$ (as a percentage of the mean).

Mean R_2^* increased from +5.8% post treatment to +14.4% by 6 weeks post CRT reducing at 11 weeks to +5.0% from baseline. Correspondingly mean IAUGC₆₀ decreased from -11.1% post treatment to -26.6% at 6 weeks to -27.9% at 11 weeks from baseline. K^{trans} decreased from -32.3% post treatment to -34.9% by 6 weeks to -53.8% at 11 weeks from baseline.

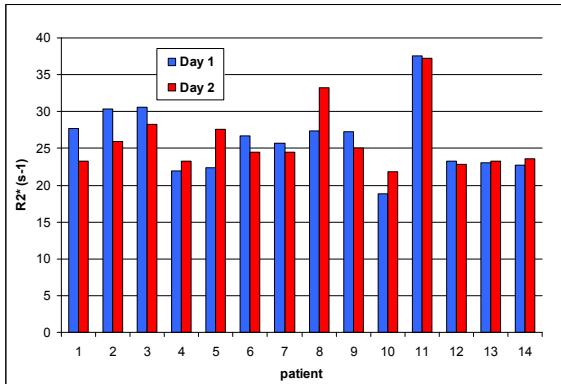


Figure 1: Reproducibility for R_2^*

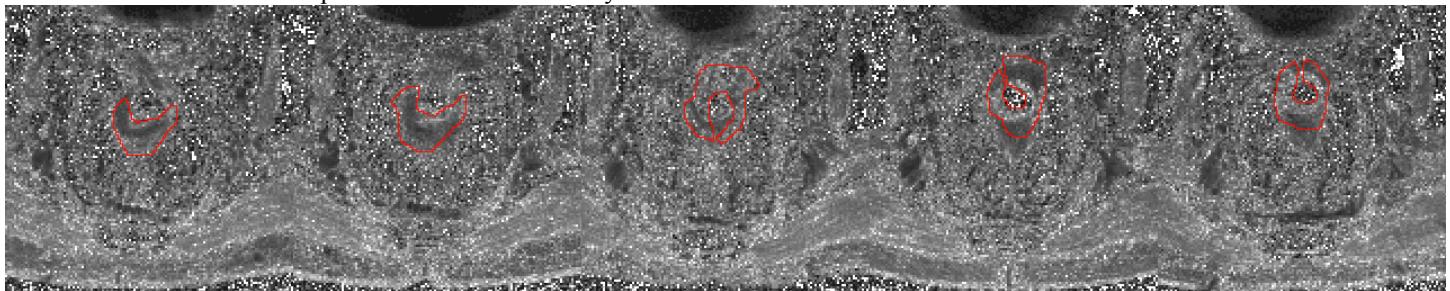
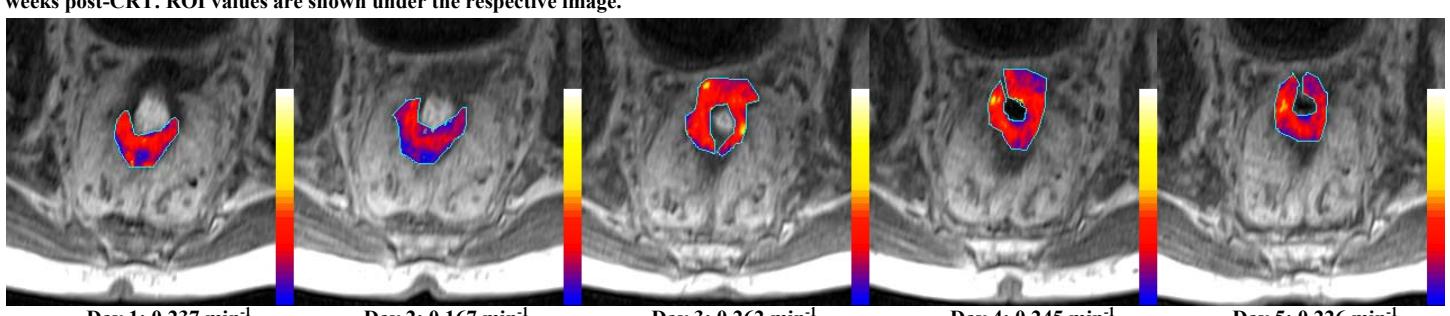



Figure 2: Matched longitudinal series of R_2^* images (top) and K^{trans} images (bottom). L>R: repro 1, repro 2, immediately after CRT, 6 weeks post CRT and 11 weeks post-CRT. ROI values are shown under the respective image.

R_2^* correlated negatively with K^{trans} and IAUGC₆₀ ($r = -0.63$, $p = 0.03$, $r = -0.54$, $p = 0.07$) at baseline but not after treatment.

CONCLUSION: R_2^* increases with decreases in IAUGC₆₀ and K^{trans} accompanied by loss of correlation between R_2^* and K^{trans} suggest that colorectal tumors are made hypoxic by chemoradiotherapy. These results have implications with regard to the optimal timing of surgery following the completion of therapy.