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Introduction
With the advent of high-field fMRI it has become possible to image cortical columnar organizations. Resolving the true underlying columnar organization depends on
several factors, e.g. the spatial scale of the columnar pattern, Blood Oxygenation Level Dependent (BOLD) point spread, voxel size and the noise level. It is not obvious
which parameter values are optimal for obtaining functional maps and whether a certain voxel size is sufficiently small for resolving patterns of known and unknown
columnar organizations. To better understand the role of each factor, and to guide the selection of

optimal parameters, we developed a mathematical model of imaging cortical columns. 1

Methods

We quantified the expected differential functional contrast relative to noise and the expected
similarity between the imaged pattern and the true neuronal columnar organization as a function of
parameters of interest. Firstly, a generic isotropic pattern of cortical columns was modeled that
allows varying the spatial frequency and degree of regularity (Rojer and Schwarz, 1990). Secondly,
fMR imaging data acquisition of this simulated cortical map was modeled, while considering the
hemodynamic point spread function, voxel size and the expected level of noise (Triantafyllou et al.
2005). In a third step, the data generated from the acquisition simulations were used to calculate (I)
the differential functional contrast relative to noise, and (II) the correlation to the original neuronal
response pattern. Measures (I) and (II) evaluated our capacity to detect cortical maps and the
accuracy with which we reconstructed them, respectively. (Fig 1)
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MRI sampling. Assuming a unimodal spectrum and the knowledge of the point spread function
this effect can be used to indicate whether the imaged pattern reflects the true pattern.
Conclusions
For a simulated columnar organization with a cycle length of 2 mm and a moderate degree of irregularity, and assuming a point spread width of 1mm of Spin-Echo
fMRI at 7T, we found that 1.28 mm-wide voxels maximized functional contrast. The correlation to the pattern of the underlying neuronal columnar organization was
maximized when using 0.9 mm-wide voxels. We further showed that assuming a unimodal spectrum and the knowledge of the point spread function, the power
spectrum of the imaged pattern can be used to confirm that the observed pattern reflects the true columnar organization.
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