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Introduction: It has been shown that arrays of loops radiofrequency (RF) coils are near optimal for imaging the central region of a spherical object [1,2]. This was
confirmed graphically in recent years using electrodynamic simulations employing a current mode expansion and dyadic Green’s functions (DGF) [3-5]. These studies
showed that ideal current patterns corresponding to ultimate intrinsic signal-to-noise ratio (UISNR) for a voxel near the center of a dielectric sphere do indeed form two
large distributed loops, centered on the x-y plane (¢ = 90°) and separated by 180 degrees in the azimuthal direction, which rotate in the same sense about an axis that
precesses around the direction of the main magnetic field (z). Although it was reported that the same current patterns are ideal at any field strength, another study
showed that the performance of the same array of loop coils with respect
SNRarray/ SNRuttimate= 0.88 | Kin@@)=—-iNIC+ D[FLX,, 0.9+ Wi XX, 0.0)] (1) to the UISNR decreases at higher field strengths [2]. The aim of this work
| is to investigate why loops become less SNR efficient at high field.

N, (kp), —iN, (k) Theory and Methods: Given a complete basis set of current modes K;,,
[M (er) M, (kr) ] (see Eq. 1) defined on a spherical surface of radius b, the resulting electric
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surface current contributions, respectively. The left circularly polarized
component of the magnetic field (B) can be derived from E using
Maxwell’s equations and, defining W= [W,V,,,(M) W,V,,,(E) ], can be written as
in Eq. 2, where T is a transformation matrix [3,4] that accounts for

oM,

)~ (5)

4k,T, - (S0 P'S(r))

-1
0,0

7 T SNRarray/SNRuItimate: 0.69

Fig. 1. A snapshot at z = 0 of ideal surface
current patterns (left column) and current
pattern for an 8-element array of loops (right
column), associated with UISNR and optimal
SNR in the center of sphere, respectively.
Although the only difference between 1.5 T
(top row) and 7 T (bottom row) is a 180
degrees phase shift, the performance of the
array changes.

boundary conditions at the surface of the sphere and S is a matrix that contains the complex signal sensitivities associated
with each mode. The vector wave functions M;,, and N,,, are defined in Eq. 3, where £ is the complex wave number and j; is
a spherical Bessel function of order /. Note that T is diagonal, so the divergence-free component of the signal sensitivity
depends only on N;,, and the curl-free component only on M,,.. Vector spherical harmonics are orthogonal in a spherical
object, so the modes’ noise covariance matrix ¥ associated with the noise equivalent resistance R (Eq. 4) is diagonal. The
UISNR at any position r inside the sphere can be calculated as in Eq. 5 [1], where M, is the equilibrium magnetization, @, is
the Larmor frequency, ks is Boltzmann’s constant, and 75 is the absolute temperature of the sample. The “0,0” subscript
indicates the diagonal element corresponding to target position r,. Ideal current patterns [3,4] are derived by performing a
weighted sum of the individual current modes K, using the optimal image reconstruction weights (W' = (S"¥"'S) "y )

resulting in UISNR [1]. SNR of any actual coil can be simulated with the same formalism by applying appropriate weighting functions to the general current
distribution [4,5] to model the coil current patterns. We simulated an array of 8 loops symmetrically arranged around the equator of the object. Calculations were
performed using 7,442 modes (/... = 60) for a 10 cm radius sphere with uniform electrical properties approximating average values in the human head [2]. The current

distribution was defined at a distance of 5 mm from the surface of the objects.

Results and Discussion: Fig. 1 shows that, for a voxel at the center of a sphere, ideal
current patterns are the same for 1.5 T and 7 T, aside from a 180° phase shift. However,
the SNR of the array with respect to the UISNR is lower in the second case. Solving Eq.
2 for r = 0 demonstrates that, independent of field strength, only 2 divergence-free
modes (/ = 1, m = £1) contribute to the signal and all others are zero. From Eq. 5, we
note that, although ¥ is calculated with a volume integral and therefore all modes
contribute to it, only the 2 elements of ¥ multiplied by the 2 non-zero elements of S
contribute to the noise in the UISNR. In the case of the array, the individual coils’
sensitivities are weighted combinations of the 2 modes that survive in the center, but
they multiply a noise covariance matrix that is not diagonal and whose elements are
weighted combinations of all the divergence-free elements of . In other words, for a
voxel in the center only 2 modes contribute to the array’s signal, but many modes (3,721
in our example) contribute to the noise. This explains why the array’s SNR is lower
compared to UISNR, but not why the performance decreases at higher field strengths.
Fig. 2 shows that the divergence-free elements of ¥ scale differently with field strength
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Fig. 2. The ratio of the divergence-free
elements of ¥ at 7 T to 1.5 T is not
constant, due to variations in the spatial
distribution of the individual modes’
electric fields.

for modes with a different value of the expansion coefficient /, due to the varying E field

distribution in the dielectric object. This means that elements of the array’s noise covariance matrix will scale differently
between 1.5 T and 7 T. On the other hand, the coils’ sensitivities will scale equally for each array element as they are
generated from only 2 modes, which share the same value of /. As a result, only the signal scales equally with field strength
for the ultimate and the array case, explaining why the ratio SNR,,,/UISNR changes. Our results showed that the decreased
performance at high-field in the center of the sphere is not due to the increased contribution to the UISNR of curl-free (i.e.
electric-dipole type) current modes, which could not be captured by loops. However, note that for a voxel at a distance from
the center, as observed in previous studies [3,4] and shown in Fig. 3, electric dipoles do contribute significantly to the shape

1 .5 T SNRarray/SNRultimate= 0.93
| |

7T

SNRarray/SNRultimate: 0.70

Fig. 3. Ideal surface current patterns (left
column) are different at 1.5 T and 7 T for a
voxel at a distance of 3 cm from the center of
the sphere. The 8-element array (right
column) is nearly optimal at low-field, but its
performance decreases at high-field, where
the contribution of the curl-free component

of the current patterns becomes significant.

of the ideal current patterns at high field, resulting in an even larger SNR performance gap between 1.5 T and 7 T.
Conclusions: Ideal current patterns associated with UISNR in the center of a sphere take the form of large distributed loops,
suggesting that arrays of loops are a reasonable choice to maximize central SNR. However, our analysis showed that discrete loops are not optimally noise-efficient,
and their performance with respect to UISNR intrinsically decreases at higher field strengths.

References: [1] Lattanzi R et al. (2010) NMR Biomed 23(2):142-51 [2] Wiesinger F et al. (2005) ISMRM p.672 [3] Lattanzi R and Sodickson DK (2008) ISMRM
p.78 [4] Lattanzi R and Sodickson DK (2011), ISMRM p.3876; MRM in press. [5] Tai CT, Dyadic Green Functions in Electromagnetic Theory (1994)

Proc. Intl. Soc. Mag. Reson. Med. 20 (2012) 2817



