
The underlying cause of the increasing performance gap between loop arrays and the ultimate SNR with increasing field 
strength 

Riccardo Lattanzi1,2, Manushka Vaidya1,2, Graham C Wiggins1, and Daniel K Sodickson1,2 
1The Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University Langone Medical Center, New York, NY, United States, 2The Sackler 

Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States 
 

Introduction:  It has been shown that arrays of loops radiofrequency (RF) coils are near optimal for imaging the central region of a spherical object [1,2]. This was 
confirmed graphically in recent years using electrodynamic simulations employing a current mode expansion and dyadic Green’s functions (DGF) [3-5]. These studies 
showed that ideal current patterns corresponding to ultimate intrinsic signal-to-noise ratio (UISNR) for a voxel near the center of a dielectric sphere do indeed form two 
large distributed loops, centered on the x-y plane (ϕ = 90°) and separated by 180 degrees in the azimuthal direction, which rotate in the same sense about an axis that 
precesses around the direction of the main magnetic field (z). Although it was reported that the same current patterns are ideal at any field strength, another study 

showed that the performance of the same array of loop coils with respect 
to the UISNR decreases at higher field strengths [2]. The aim of this work 
is to investigate why loops become less SNR efficient at high field. 
Theory and Methods:  Given a complete basis set of current modes Kl,m 
(see Eq. 1) defined on a spherical surface of radius b, the resulting electric 
(E) field inside a dielectric sphere of radius a<b can be calculated as 
E (r) = iωμ0 G(r, ′r ) ⋅K( ′r ) d ′A

A∫  [5]. In these expressions, i is the 

imaginary unit, l, m are the expansion indices, Xl,m is a vector spherical 
harmonic of order (l, m), ω is the angular frequency, μo is the magnetic 
permeability in free space,   G(r, ′r )  is the branch of the DGF 
corresponding to the region indicated by r, and Wl,m

(M) and Wl,m
(E) are the 

series expansion coefficients representing divergence-free and curl-free 
surface current contributions, respectively. The left circularly polarized 
component of the magnetic field (B) can be derived from E using 
Maxwell’s equations and, defining WT = [Wl,m

(M)  Wl,m
(E)], can be written as 

in Eq. 2, where T is a transformation matrix [3,4] that accounts for 
boundary conditions at the surface of the sphere and S is a matrix that contains the complex signal sensitivities associated 
with each mode. The vector wave functions Ml,m and Nl,m are defined in Eq. 3, where k is the complex wave number and jl is 
a spherical Bessel function of order l. Note that T is diagonal, so the divergence-free component of the signal sensitivity 
depends only on Nl,m and the curl-free component only on Ml,m. Vector spherical harmonics are orthogonal in a spherical 
object, so the modes’ noise covariance matrix Ψ associated with the noise equivalent resistance R (Eq. 4) is diagonal. The 
UISNR at any position r0 inside the sphere can be calculated as in Eq. 5 [1], where M0 is the equilibrium magnetization, ω0 is 
the Larmor frequency, kB is Boltzmann’s constant, and TS is the absolute temperature of the sample.  The “0,0” subscript 
indicates the diagonal element corresponding to target position r0. Ideal current patterns [3,4] are derived by performing a 
weighted sum of the individual current modes Kl,m using the optimal image reconstruction weights (Wopt = (SHΨ-1S) SHΨ-1) 

resulting in UISNR [1]. SNR of any actual coil can be simulated with the same formalism by applying appropriate weighting functions to the general current 
distribution [4,5] to model the coil current patterns.  We simulated an array of 8 loops symmetrically arranged around the equator of the object. Calculations were 
performed using 7,442 modes (lmax = 60) for a 10 cm radius sphere with uniform electrical properties approximating average values in the human head [2].  The current 
distribution was defined at a distance of 5 mm from the surface of the objects.   
Results and Discussion:  Fig. 1 shows that, for a voxel at the center of a sphere, ideal 
current patterns are the same for 1.5 T and 7 T, aside from a 180° phase shift. However, 
the SNR of the array with respect to the UISNR is lower in the second case. Solving Eq. 
2 for r = 0 demonstrates that, independent of field strength, only 2 divergence-free 
modes (l = 1, m = ±1) contribute to the signal and all others are zero. From Eq. 5, we 
note that, although Ψ is calculated with a volume integral and therefore all modes 
contribute to it, only the 2 elements of Ψ multiplied by the 2 non-zero elements of S 
contribute to the noise in the UISNR. In the case of the array, the individual coils’ 
sensitivities are weighted combinations of the 2 modes that survive in the center, but 
they multiply a noise covariance matrix that is not diagonal and whose elements are 
weighted combinations of all the divergence-free elements of Ψ. In other words, for a 
voxel in the center only 2 modes contribute to the array’s signal, but many modes (3,721 
in our example) contribute to the noise. This explains why the array’s SNR is lower 
compared to UISNR, but not why the performance decreases at higher field strengths. 
Fig. 2 shows that the divergence-free elements of Ψ scale differently with field strength 
for modes with a different value of the expansion coefficient l, due to the varying E field 
distribution in the dielectric object. This means that elements of the array’s noise covariance matrix will scale differently 
between 1.5 T and 7 T. On the other hand, the coils’ sensitivities will scale equally for each array element as they are 
generated from only 2 modes, which share the same value of l. As a result, only the signal scales equally with field strength 
for the ultimate and the array case, explaining why the ratio SNRarray/UISNR changes. Our results showed that the decreased 
performance at high-field in the center of the sphere is not due to the increased contribution to the UISNR of curl-free (i.e. 
electric-dipole type) current modes, which could not be captured by loops. However, note that for a voxel at a distance from 
the center, as observed in previous studies [3,4] and shown in Fig. 3, electric dipoles do contribute significantly to the shape 
of the ideal current patterns at high field, resulting in an even larger SNR performance gap between 1.5 T and 7 T. 
Conclusions:  Ideal current patterns associated with UISNR in the center of a sphere take the form of large distributed loops, 
suggesting that arrays of loops are a reasonable choice to maximize central SNR. However, our analysis showed that discrete loops are not optimally noise-efficient, 
and their performance with respect to UISNR intrinsically decreases at higher field strengths. 
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Fig. 1. A snapshot at t = 0 of ideal surface 
current patterns (left column) and current 
pattern for an 8-element array of loops (right 
column), associated with UISNR and optimal 
SNR in the center of sphere, respectively. 
Although the only difference between 1.5 T 
(top row) and 7 T (bottom row) is a 180 
degrees phase shift, the performance of the 
array changes. 

Fig. 3. Ideal surface current patterns (left 
column) are different at 1.5 T and 7 T for a 
voxel at a distance of 3 cm from the center of 
the sphere. The 8-element array (right 
column) is nearly optimal at low-field, but its 
performance decreases at high-field, where 
the contribution of the curl-free component 
of the current patterns becomes significant. 

 
Fig. 2. The ratio of the divergence-free 
elements of Ψ at 7 T to 1.5 T is not 
constant, due to variations in the spatial 
distribution of the individual modes’ 
electric fields. 
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