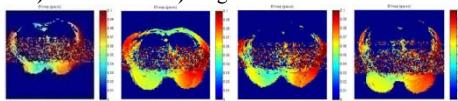
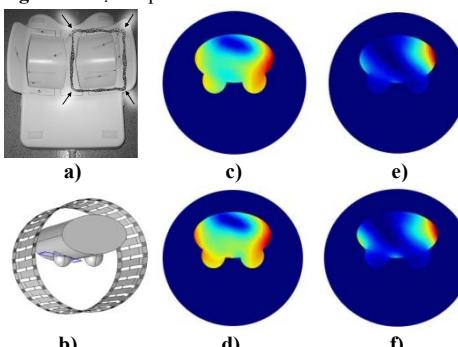


Field shaping arrays: a means to address shading in high field breast MRI


Ileana Hancu¹, Seung-Kyun Lee¹, W. Thomas Dixon¹, Laura Sacolick², Ricardo Becerra³, Zhenghui Zhang³, Graeme McKinnon³, and Vijayanand Alagappan⁴
¹GE Global Research Center, Niskayuna, NY, United States, ²GE Global Research Center, Munich, Germany, ³GE Healthcare, Waukesha, WI, United States, ⁴GE Healthcare, Aurora, OH, United States

Introduction: High field imaging increased the diagnostic power of MRI. Some of the disadvantages of imaging at high field, such as the fact that a homogeneous excitation is not a solution of Maxwell's equations, have, however, slowed the transition of some clinical exams to 3T. Shaded images, reported by users of all manufacturers' scanners [1-3], have, for example, limited the use of high field systems in breast MRI. While elliptical, dual or multiple drive systems were shown to mitigate this problem and may soon become the clinical standard, they can't address this issue for legacy scanners. Here, we investigate the origin of breast shading in phantom experiments on such a legacy 3T scanner with a quadrature drive RF body coil. We then develop a solution for this problem based on modification of a standard, 8 channel receive (Rx) array. The field focusing (or passive parallel transmit) effect, obtained through selective un-blocking and up-tuning of one of the Rx elements during the transmit (Tx) phase, is shown to improve B_1^+ homogeneity, fat suppression and image SNR in all the volunteers studied in this system.


Methods: All experiments presented in this work were performed on a 3T HDx scanner (GE, Waukesha, WI), and all B_1^+ maps were acquired using a Bloch-Siegert approach [4], and displayed using a threshold of 95% of the signal intensity. A phantom simulating a female torso, filled with oil, de-ionized (DI) water or 2.2g/l NaCl dissolved in DI water was first scanned to understand the source of the shading artifact. The B_1^+ maps in these 3 configurations are presented in Figure 1.

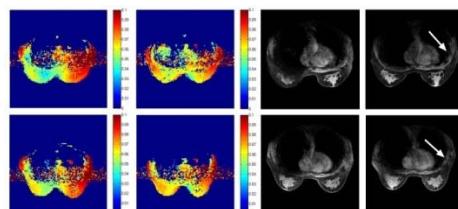

Figure 1: a) Geometry of experiments. B_1^+ maps in b) oil c) DI water and d) 2.2g/l NaCl in DI water

Figure 2: B_1^+ maps in 4 different volunteers

Figure 3: a) location of un-blocked Rx coil b) geometry of simulations. Simulated B_1^+ maps c) in normal configuration d) with unblocked coil. Simulated SAR maps e) in normal configuration f) with unblocked coil

Figure 4: B_1^+ maps in 2 volunteers (separate rows) in standard configuration (1st col.) and with unblocked coil (2nd col.). 3D GRE images in standard configuration (3rd col.) and with unblocked coil (4th col.)

The L/R ratios seen in this study are also similar (or smaller) to the ones documented in previous reports, which used scanners from different manufacturers, with different RF body coils [1-3]; this indicates that shading is mostly related to the physics of imaging at high field, and less to the particular engineering approaches (including choices of RF body coils) chosen by different MRI equipment manufacturers. A simple correction approach, based by un-blocking and up-tuning of one of the Rx elements during Tx was shown to mitigate this problem, and result in more homogeneous B_1^+ profiles, better fat suppression, higher image SNR, all with lower SAR. While elliptical or dual drive may be the preferred future solution, this simple field focusing (or passive parallel transmit) approach may be a viable solution for legacy 3T scanners.

References: 1. Azlan et al, J Magn. Reson Im **31**:234-239 (2010) 2. Zheng et. al, Proc 19-th Intl Soc Magn Reson Med, 1042 (2011) 3. Sung et al, Proc 19-th Intl Soc Magn Reson Med, 3086 (2011) 4. Sacolick et al, Magn Reson Med **63**: 1315-1322 (2010) 5. Hancu et al, Proc 18-th Intl Soc Magn Reson Med, 2470 (2010) 6. Schmitt et al, Proc 13-th Intl Soc Magn Reson Med, 331 (2005).

Grant support: SR01EB005307, 1R01CA154433