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Introduction:

Combining RF hyperthermia and MR imaging is conceptually appealing to pursue spatially and temporally controlled and monitored RF heating. The
benefits of this approach could be used as an adjunctive therapy for established cancer treatments including radiotherapy and chemotherapy [1],
targeted drug delivery [2] and targeted MR contrast agent delivery [3]. The purpose of this simulation study is to evaluate the feasibility of targeted RF
heating at MR frequencies ranging from 64 MHz to 500 MHz. For this purpose two different coil designs were used including a stripline array and a

bowtie shaped radiative dipole antenna configuration. The
simulations are an essential precursor for designing and
building a hybrid applicator suitable for imaging and targeted
RF heating.

Methods:

A simulation study of an eight channel array with spin

excitation frequencies at 1.5T (64MHz), 3.0T (127MHz),

7.0T (297MHz), 9.4T (400MHz) and 11.7T (500 MHz) was

performed and evaluated on the ability to create a localized

hotspot inside a phantom. The elements were positioned

symmetrically around a cylindrical phantom with tissue

properties €4=50.5, 04=0.657 S/m. Numerical

electromagnetic field and transient thermal simulations were

performed using CST Microwave Studio (CST GmbH,

Darmstadt Germany). Post-processing of the 3D simulations

was done within the RF circuit simulator of CST (Design

Studio, part of CST Studio Suite 2010) as described in [4].

The mesh resolution inside the phantom was below

2x2x2mm?. To validate the simulated fields a cylindrical

phantom (r1=90mm,|=250mm, €2=75, 02=0.72 S/m) was

built. All point SAR calculations were performed for 1W

accepted power at each port. Two different designs of

transmit applicators were used, stripline elements and

radiative dipoles. Both designs could provide a suitable setup
for a hybrid applicator due to their imaging properties at
ultrahigh fields [5-6]. For evaluation iso-SAR 25%, iso-SAR
50%, iso-SAR 75% and iso-SAR 90% contours were defined
for the centric area inside the phantom as well as for the
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Fig. 1: Comparison of the point SAR pattern [W/kg] of different operating
frequencies for a modified stripline array in axial (a) and coronal (b) view of a
cylindrical phantom (g4,=50.5, 6,=0.657 S/m) and a dipole antenna array in axial (c)

and coronal (d) view.
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Fig. 2: Point SAR simulations (left)
of an eight channel dipole antenna
applicator at 297MHz and related

Tab. I). Due to the shorter wavelength inside the phantom at higher frequencies, the area of the focal hotspot is
as small as 12x12mm iso-SAR 90% at 500 MHz. The dipole antenna showed improved focusing parameters at
297MHz yielding an iso-SAR 75% of 12x12mm? , iso-SAR 50% of 48x48mm? in tissue and an iso-SAR 90% of
18x18mm? , iso-SAR 75% of 22x22 mm? inside the phantom which comes close to that area of the hotspots
achieved with the strip line configuration at 400MHz. The smallest focal SAR (iso-SAR 90%, 12x12mm?) could
be achieved with the stripline array at 500MHz. The simulated SAR pattern of the dipole antenna at 297MHz
generates a temperature difference inside the phantom between the central hotspot and the surface area of
AT=5K (Fig. 2).

temperature simulations (right) for
25W continuous wave heating for
5 minutes in an axial (a) and
coronal (b) slice. Phantom
properties: €2=75, 02=0.72

Conclusion:

The results of this study suggest that a hybrid applicator for imaging and heating is feasible. At ultrahigh fields focal hotspots can be created using a coil
design which supports both RF heating as well as imaging. The size of the focal hotspot decreases with the decrease in the wavelength. Dipole
antennas show improved properties for localized RF heating compared to a stripline design at 297MHz. A larger number of channels will be beneficial to
further reduce surface SAR values. The same approach would increase the degree of freedom for controlling and steering the geometry and position of
focal SAR hotspots and an extension towards a two-dimensional array would allow a three-dimensional steering of these focal SAR hotspots. The
results of this study will be used to build a hybrid applicator at 7.0T both for imaging and RF-heating.
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