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Introduction: Specific absorption rate (SAR) evaluation of an MR transmit coil is mandatory to assess patient safety. Commercial EM-simulation
software packages provide SAR computation routines; however these often lack the speed and flexibility required for more complex usage scenarios
like multi-channel excitation. Additionally, the computation standards usually employed (IEEE 1528.1, C95.3) exhibit averaging artifacts at different
tissue- and tissue-air interfaces [1, 3]. Both speed and artifact issues have been previously approached by regridding to high resolutions [2] and
region growing algorithms [3]. As an alternative, we present a fast, inherently parallelized algorithm to calculate the SAR using modern multi-core
CPUs and GPUs that can be easily implemented without advanced programming skills.

The SAR averaging process can be regarded as a repeated convolution of the three-dimensional mass and power density distributions using kernels
of varying sizes representing the differently sized averaging volumes. Calculating the convolution in Fourier space is much faster than in real space.
The FFT can be very efficiently calculated using modern graphics processing units (GPUs); and freely available implementations for MATLAB (e.g.
GPUMat, gp-you.org) or Python (PyFFT, pypi.python.org/pypi/pyfft) allow code execution without knowledge of GPU-specific programming.
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Fig. 3: Sagittal maximum intensity projections of both cubical and spherical averaging volumes and

the 10g averaged SAR / absorbed power (spherical various regridding resolutions.

volume) for Imm (left) and 5 mm (right) resolution Results: The calculated 10g SAR distributions
(Fig.3) show a very small variation of less than 5% for the peak value w.r.t. the XFdtd result
when changing the gridding resolution (Fig. 4). Calculation takes less than 2 seconds at 5 mm resolution on an NVIDIA Tesla C2070. This shows
that the sub-voxel growing scheme works as expected. SAR values for spherical averaging shapes were consistently higher by 7% on average. While
the algorithm does not enforce connectedness of the voxels inside the averaging volume, it still effectively grows the averaging volume into the body
at the outer surface and thus renders superficial hotspots correctly.

Conclusion: We have introduced an algorithm to very quickly calculate the SAR for arbitrary averaging mass and shape using modern GPUs. It is
very robust even at low resolutions and can be straightforwardly extended to related problems such as the calculation of Q-matrices [6] for locel
SAR management in transmit arrays.
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