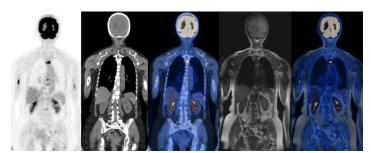
Sequential integrated PET/CT-MR system: Comparison of image registration accuracy of PET/CT versus PET/MR


Felix Pierre Kuhn¹, Florian Wiesinger², Scott Wollenweber³, Andrei Samarin¹, Gustav von Schulthess¹, and Daniel Schmid¹ Radiology, University Hospital, Zurich, Switzerland, ²GE Global Research, Munich, Germany, ³GE Healthcare, Waukesha, United States

* Fig. 1: Patient transfer shuttle with special transfer-board on top in front of the PET/CT-system (GE Discovery 690) in the room on the left and the 3T-MR (GE Discovery 750) in the adjacent room to the right. The special transfer board allows for surface coil placement/removal between the exams even underneath the patient without patient repositioning.

* Fig. 2: Patient on the transfer-board with dedicated RF coils for head, neck and torso imaging installed.

* Fig. 3: Example of PET/CT and PET/MR image registration. From left to right: Coronal FDG-PET, unenhanced CT, PET/CT fusion image, Dixon-based T1w MR, and PET/MR fusion image of a 70-year-old female patient referred for staging of breast-cancer.

Purpose: Multi-modality imaging combines morphological and functional information originating from different imaging platforms and is based on the critical assumption of accurate registration. In the presented work a tri-modality PET/CT+MR system is used to investigate the hardware registration performance between sequential PET and MR versus gold standard PET/CT. In particular, the impact of the longer timespan between sequential PET/MR versus PET/CT in terms of motion-induced misalignment is investigated in both phantoms and patients.

Materials and Methods: The evaluated tri-modality PET/CT+MR setup (time-of-flight Disocovery PET/CT 690, 3T Discovery MR 750, both GE Healthcare, Waukesha, MI) uses a front-loading shuttle system with flexible placement and removal of dedicated RF coils. This allows for fast and high SNR MR coverage of head, neck and torso and enables PET/CT scanning free of RF coil induced artefacts. Ten patients underwent a CT-scan (80mA/120keV) followed by a PET (total scan time 16 minutes), a shuttle-transfer to the MR-system in the adjacent room, and a MRscan (Dixon based T1w gradient echo sequence). The accuracy of the PET/CT and PET/MR registration was assessed separately for head/neck and torso by using a commercial software-based registration tool (Integrated Registration, Advantage Workstation, GE Healthcare). To assess the intrinsic registration accuracy phantom measurements were performed using a multi-modality phantom (CIRS, Norfolk, VA).

Results: The time delay between the start of the CT and the start of the PET was 2 minutes, whereas the MR started 2 minutes after completion of the PET. The mean lateral registration inaccuracy for the phantom was 1.2 mm \pm 1.2 mm. The mean lateral registration inaccuracy between PET and CT images was 1.8 mm \pm 1.1 mm for the torso and 0.3 mm \pm 2.2 mm for head/neck in the lateral direction. Two patients rotated their head (< 20°). Between PET and MR images registration inaccuracy was 0.7 mm \pm 3.4 mm for the torso and 1.4 mm \pm 4.3 mm for head/neck, with three patients who had rotated their head (< 20°). No significant differences were found for the misalignment of PET with CT compared to PET with MR in the head/neck (p = 0.833; Wilcoxon Signed Ranks Test) and in the abdomen (p = 0.917). Due to a fixed table height and consistent laser light landmarking on the top of the transfer-table there were no offsets in the longitudinal or the anterior-posterior direction.

Conclusion:

Despite the relatively long duration of a sequential PET/CT+MR exam (approx. 30 minutes) the image registration accuracy was excellent with less than 4 mm lateral misalignment between CT, PET and MR data sets and similar to the intrinsic error assessed with phantom measurements. In a clinical setting such values can be considered not relevant for appropriate image interpretation in most situations. Therefore comparison of PET/CT and PET/MR data using this tri-modality system is feasible even without using a dedicated software-based registration tool.