

Implications of posture changes on local SAR and B_1^+ homogeneity in RF shimming at 3T

Desmond Teck Beng Yeo¹, Zhangwei Wang², and Ileana Hancu¹

¹Diagnostics and Biomedical Technologies, GE Global Research, Niskayuna, NY, United States, ²GE Healthcare Coils, Aurora, OH, United States

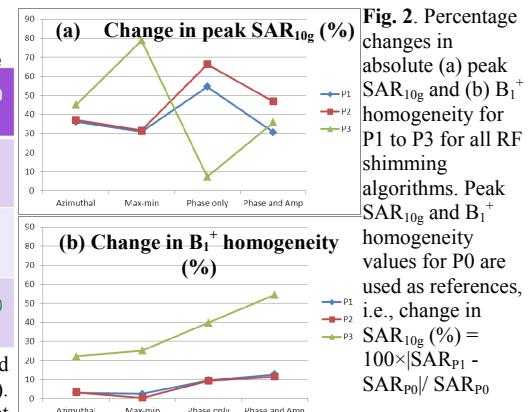
Introduction: The advent of high-field MRI has led to the development of multi-channel transmit RF coils, which afford more degrees of freedom to tailor B_1^+ and E-field distributions. The prediction of local SAR in multi-channel transmit systems is a highly challenging task. One approach involves using EM simulations to calculate SAR distributions after optimizing the voltage feeds' complex weights to obtain uniform excitation profiles. The optimized weights are then applied to the input of the RF power amplifiers and the transmitted waveforms are monitored [1-3]. If the transmitted waveforms correlate with the calculated waveforms, an estimate of the local SAR distribution is deemed to be available from the simulations. This approach provides some information about local SAR risks, especially if a patient- and position-specific human body model (HBM) is used. However, when a subject moves [4,5] after RF shimming optimization, the complex weights calculated for the previous posture may no longer apply. Our work uses EM simulations and a posable HBM to investigate B_1^+ homogeneity and peak local SAR_{10g} variations when a subject moves after 3T RF shimming optimization is performed for an initial posture.

Methods:

FDTD modeling: A 16-rung TEM body coil (dia. 61.0cm, length 42.2 cm) connected to a RF shield (dia=65.0cm, length=100.0cm) via copper strips (2.5cm×2.0cm) is modeled and tuned to 127.74MHz with SEMCAD X (SPEAG, Zurich, Switzerland). Each rung is excited with an independent 50 Ω voltage source at 127.74 MHz with adjustable amplitude and phase. The tuning is done by feeding a broadband Gaussian pulse to one voltage source at a time while the capacitors of the respective rung are varied [6]. Each TEM rung is 2.5cm wide, 42.2cm long, and has four capacitor junctions. In circularly polarized mode, the voltages sources have equal magnitudes and azimuthally dependent phases (22.5° apart in adjacent rungs). The 'Duke' (77 tissue types, weight:72.4 kg, height:1.77m) human body model (HBM) from the "Virtual Family" dataset [7] is used in the experiments. Using the Poser software (SPEAG, Zurich, Switzerland), four different HBM postures (P0 to P3) are created with the pelvises located in the center of the rungs (Fig. 1). The back of the HBM is located 175mm away from the furthest rung in the posterior direction. The 4 models are meshed to a minimum finite-difference time-domain (FDTD) cell size of 3mm×3mm×3mm. A 4-Cole-Cole extrapolation method is used to compute the electrical properties of the various tissue types.

RF shimming: The TEM coil rungs are individually excited to obtain 16 sets of complex B_1^+ maps of the HBM in posture P0. Using Matlab (Mathworks, Natick, MA), the 16 B_1^+ maps from the same axial slice (isocenter of coil) are linearly combined with optimal complex weights calculated by three RF shimming approaches (max-min, phase-only [8], amplitude-phase [9,10]) using the following cost functions:

$$\Psi_{\max-\min}(\mathbf{w}) = \sum_r \left(1 / \sum_{k=1}^N w_k B_{1,\text{ch},k}^+(\mathbf{r}) \right), \quad \Psi_{\text{phase}}(\mathbf{w}) = \left\| \mathbf{B}_{1,\text{measured}}^+ \mathbf{w} - \mathbf{B}_{1,\text{target}}^+ \right\|^2 \text{ subject to } |w_n| = \text{constant for all channels, and } \Psi_{\text{amp-phase}}(\mathbf{w}) = \left\| \mathbf{B}_{1,\text{measured}}^+ \mathbf{w} - \mathbf{B}_{1,\text{target}}^+ \right\|^2,$$


where \mathbf{r} is the spatial coordinate vector, \mathbf{w} is the vector of complex weights, $\mathbf{B}_{1,\text{measured}}^+$ is a M×N matrix of individually excited B_1^+ values (column stacked) from EM simulations, $\mathbf{B}_{1,\text{target}}^+$ is a M×1 column-stacked vector of a desired B_1^+ profile, and M is the number of voxels in the RF shimming region. The optimal weights calculated for P0 are then applied to postures P1 to P3 in full-wave simulations to obtain peak SAR_{10g} and B_1^+ homogeneity values. The resultant peak SAR_{10g} values in P1 to P3 denote the SAR risks to the HBM if it moves after RF shimming optimization is done for an initial posture (P0). B_1^+ homogeneity values are defined as the mean of B_1^+ divided by the standard deviation B_1^+ in the axial slice of the HBM (excluding free space voxels).

Experiments: Forty simulations are performed (4 postures×[1 azimuthal+3 RF shimming techniques×3 RF shimming trials]). All computations were performed on an Intel Xeon quad-core 2.13 GHz CPU with two Nvidia Quadro FX5800 GPUs.

Results and Discussion: Each cell in Fig. 1 shows the average (over three RF shimming realizations) peak SAR_{10g} and B_1^+ homogeneity values and their coefficients of variation (CV=σ/μ×100%) for each combination of posture and RF shimming algorithm. The CVs for the peak SAR_{10g} values are much higher (>25%) for the phase and amp-phase RF shimming algorithms than for the B_1^+ homogeneity values. This is largely because the RF shimming algorithms seek to yield the highest B_1^+ homogeneity and do not take into account the associated E-fields (SAR) generated. Thus, values for the former are more consistent while the peak SAR_{10g} variation is larger. The B_1^+ homogeneity is observed to increase from left to right in Fig. 1 as the number of degrees of freedom (amplitudes and phases) increases. Fig. 2(a) and 2(b) plot the average absolute changes in peak SAR_{10g} and B_1^+ homogeneity for different postures and RF shimming algorithms as a percentage of the values calculated for posture P0. For any given RF shimming algorithm, higher percentage changes denote greater risks in relying on peak SAR_{10g} and B_1^+ homogeneity values that are calculated for P0, i.e., values for P0 are no longer good predictors of local SAR risk and B_1^+ homogeneity. The changes in peak SAR_{10g} are all greater than 30% except in one case (P3 phase-only). In contrast, the changes in B_1^+ homogeneity are all smaller than 30% except in two cases (P3 phase-only and phase-amp). This suggests that patient motion that occurs after RF shimming optimization can significantly alter the local SAR risks even when B_1^+ homogeneity appears relatively unchanged. However, it is possible that some postures may induce more significant changes to B_1^+ homogeneity values than others, e.g., P3 yielded at least one case where the change is >50%.

RF shimming (3 RF shimming methods)	Top values: Avg Peak SAR _{10g} in W/ kg (coefficient of variation=σ/μ×100), Bottom values: Average B_1^+ homogeneity (coefficient of variation)			
	Azimuthal	Max-min	Phase-only	Amp-Phase
Posture P0	634.52, 3.86	639.6 (±5.4%) 4.4 (±1.9%)	1816.3 (±31.9%) 6.5 (±3.7%)	1445.6 (±49.8%) 8.4 (±3.9%)
Posture P1	404.9, 3.98	456.0 (±6.3%) 4.3 (±2.8%)	828.4 (±26.5%) 5.7 (±2.1%)	1337.8 (±8.6%) 7.2 (±3.9%)
Posture P2	398.7, 3.99	452.1 (±6.9%) 4.4 (±2.8%)	613.4 (±36.4%) 5.75 (±2.3%)	868.2 (±36.7%) 7.3 (±3.4%)
Posture P3	919.4, 3.0	1158.6 (±3.8%) 3.3 (±1.1%)	1684.3 (±54.7%) 3.8 (±2.9%)	1477.7 (±60.0%) 3.7 (±2.4%)

Fig. 1. Results of peak SAR_{10g} and B_1^+ homogeneity when RF shimming weights calculated for posture P0 are applied to postures P1 to P3 (target of avg B_1^+ =7uT in axial slice of pelvis). Three realizations of RF shimming weights were computed for each cell in the top row (except azimuthal case) and applied to postures P1 to P3 to generate data in rows 2 to 4. Each cell lists the average peak SAR_{10g} value followed by the average B_1^+ homogeneity.

Conclusions: For the Duke HBM, posture changes after RF shimming optimization can result in significant variation in peak local SAR_{10g} values, even when B_1^+ homogeneity values remain relatively unchanged. Since E-fields cannot be easily measured with MR, this implies that the SAR risks to the subject would change even if the operator continues to observe homogeneous B_1^+ maps after RF shimming has been performed at least once.

References: [1] Graesslin I, et al. ISMRM 2007 pg. 1086. [2] Brote I, et al. ISMRM 2009 pg. 4788. [3] Stang PP, et al. ISMRM 2009 pg. 3024. [4] Bammer R, et al. ISMRM 2011. [5] Graesslin I, et al. ISMRM 2007 p.867. [6] Yeo D, et al. JMRI 2011;33:1209-17. [7] Christ A, et al. 2010;55:N23–38. [8] Metzger GJ, et al. MRM 2008;59:396–409. [9] Hoult DI, et al. JMRI 2000;12:46-67. [10] Ibrahim TS, IEEE TMI 2006;25:1341-7.