31-Channel 3T Cardiac Array Optimized for SNR and g-Factor

Scott B King¹, Mike J Smith¹, Jarod Matwiy¹, Hung-Yu Lin¹, and Boguslaw Tomanek²

¹Institute for Biodiagnostics, National Research Council of Canada, Winnipeg, Manitoba, Canada, ²Institute for Biodiagnostics, National Research Council of Canada, Calgary, Alberta, Canada

Introduction

Most array coils used for body imaging utilize regular shaped rectangular or circular surface coils evenly distributed to cover the entire torso [1,2]. The cardiac region comprises a relatively small volume compared to the entire human torso, therefore, an optimized cardiac array coil should reflect this, to make the best use of a limited number of receivers (32 receivers in our case). We report on a 31-channel array designed specifically for cardiac MRI at 3T, optimized for SNR and parallel imaging performance [3].

Theory/Methods

The anterior array design philosophy was to use smaller elements centered above the heart, to improve SNR and g-factor where needed, and larger elements beyond the targeted ROI for full coverage and maintaining low g-factor in the ROI. Simulations were performed using SEMCAD X (Schmid and Partner Engineering, Zurich). The simulation phantom consisted of a "body" (40cm (L-R) x 24cm (A-P) x 60cm (S-I)) and ellipsoidal "arms" (14.7cm (A-P) x 6.7cm (L-R) x 54cm(S-I)) of uniform tissue ($\sigma = 0.6075S/m$, $\varepsilon_r = 32.4$), and a 1.5 cm layer of peripheral adipose tissue ($\sigma = 0.07S/m$, $\varepsilon_r = 5.1$). The 6-channel anterior benchmark array was modeled after the OEM 6-channel body matrix combined with 6-channels of a OEM spine array (12-Ch OEM), while the 32-channel benchmark array was modeled after Zhu et.al.[1] as 16-anterior elements and 16-posterior elements overlapped in the S-I direction with small gaps in the L-R direction. Our optimized 25-channel anterior array size was 34cm (S-I) x 39cm (L-R), each of the 25 anterior elements tuned to 123.2 MHz included 1-active trap, 1-passive trap, 1-fuse, and a 1.4 Ω input impedance preamp (Hi-Q.A., Carleton Place, ON, Canada). The 25-channel anterior array was combined with 6-channels from the OEM posterior spine array for a total of 31-channels (31-Ch IBD). Simulated and experimental SNR/g-factor analysis was performed using Musaik (Schmid and Partner Engineering, Zurich). Experiments were performed on a 3T TIM TRIO 32-channel MRI system.

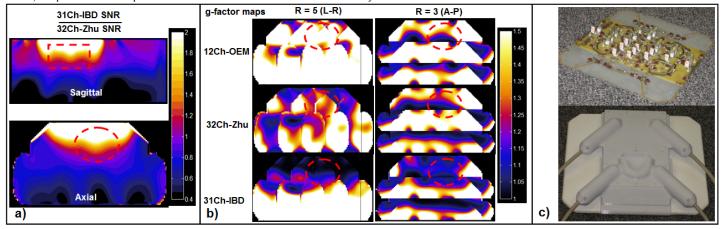


Fig. 1: (a) Simulated SNR Ratio of 31-Ch IBD and 32-Ch benchmark array, (b) simulated g-factor map comparison, (c) prototype 25-Ch anterior array.

Results/Discussion

Compared to a standard design 32-channel array with 16-channels anterior and 16-channels posterior with evenly distributed elements, the SNR gain for our 31-channel optimized array with 25-channels anterior is expected to be better by up to a factor of 3 in the anterior portion of the heart (*Fig.1a*). The g-factor advantages of this design are shown in *Figure 1b*, where R=5 (L-R) and R=3 (A-P) are achievable only with the optimized design. The constructed 25-Ch anterior array is depicted in *Figure 1c*. In vivo cardiac imaging shows that for R=5 (L-R) a g-factor < 1.5 in the heart is achieved with the optimized array (*Fig.2b*) but not with the 12-Ch OEM array(*Fig.2a*). Figure 2c,d show anterior heart SNR gain of 2.88 (360/125), and posterior heart SNR gain of 1.27 (140/110) for 31-Ch-IBD relative to 12-Ch OEM.

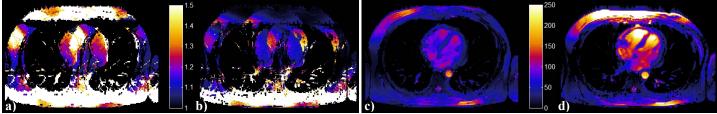


Fig. 2: Cardiac experimental data showing; (a,b) R=5 (L-R) g-factor map and (c,d) SNR map for (a,c)12-Ch OEM Array, (b,d)31-Ch IBD Array.

Conclusions

By relaxing performance benefits outside the cardiac region, we designed a coil better suited to cardiac imaging compared to symmetrical, pattern based designs. Up to 2.88x SNR gains and significant g-factor improvements were achieved within the cardiac region using this anterior design.

Reference

[1]Zhu et al. MRM 52:869-877 (2004). [2]Hardy et al. MRM 55:1142-1149 (2006). [3]Pruessmann et al. MRM 42:952-962 (1999). Acknowledgements: The authors thank Calvin Bewsky for housing development of the prototype array