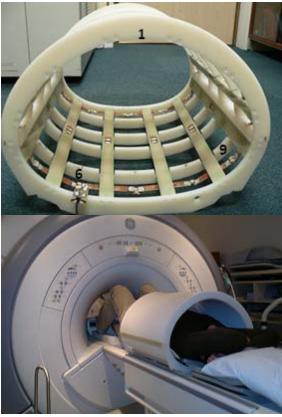
An Asymmetric Insert Quadrature Birdcage Coil for Hyperpolarised ¹²⁹Xe Lung MRI at 1.5 T


Xiaojun Xu¹, Martin H Deppe¹, Nicola De Zanche², and Jim M. Wild¹

¹Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom, ²Department of Medical Physics, Cross Cancer Institute and University of Alberta. Canada

Introduction: The objective was to develop an insert body transmit-receive birdcage RF coil for imaging of hyperpolarised ¹²⁹Xe in the lungs at 17.7 MHz at 1.5 T. The design makes efficient use of the available bore space within a clinical MR system, has homogenous B₁ field and is transparent to the ¹H body coil making anatomical ¹H imaging of the chest possible without moving the coil.

Materials and Methods: For patient comfort and for future accommodation of a receive array, the coil size is maximised to make full use of the magnet bore. The mesh of the coil's conducting elements follows the pattern of a coil previously developed for ³He lung MRI¹. The positions of the coil's 12 elements were designed using conformal mapping methods¹ to produce a highly homogeneous B₁ field. Fig. 1 shows a photograph of the coil mesh and the finished coil on the patient bed. The coil has a band-pass design, with capacitors located on the mid-points of the legs and rungs. To determine the approximate capacitor values required to resonate the coil at 17.7 MHz, an algebraic method², which uses the measured self and mutual inductances of the 12 meshes. By inversion of Leifer's expression³ for the eigen-modes of the coil, the resulting capacitance values provided the first iteration. Due to inductive coupling of the xenon coil to the ¹H body birdcage coil of the magnet (Signa HDx, GE), a decrease in all of the simulated capacitances was needed and the final values are summarised in table 1. Mesh #1 is located at the top of the coil. Lattice matching networks were connected across endring capacitors at mesh positions 6 and 9 for quadrature excitation (Fig. 1 top).

Experiments were performed on a healthy volunteer (26 years old, 50 kg). ^{129}Xe was polarised by Rubidium (Rb) spin exchange using a homebuilt regulatory-approved polariser system. 4 After an hour accumulation, the frozen xenon was then sublimated and collected in a 500 me dose in a 1 e Tedlar bag which was filled up with medical grade N_2 gas. The typical polarisation of the gas after thawing was ~10%. ^{129}Xe ventilation images were obtained at breathold with 3 image acquisitions per slice to obtain ventilation images as well as a B_1 map. The sequence was a 2D spoiled gradient echo, parameters were: 20 mm coronal slices covering the whole

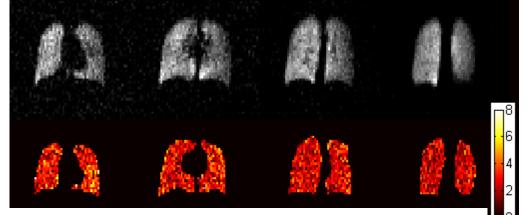


Figure 1. Insert xenon body coil with 12 mesh (top) and setup on a clinical 1.5 T system with patient access (bottom).

lung, FOV of 40 cm x 40 cm, resolution of 64 x 64 matrix, BW of 8 kHz, TE/TR of 4/10.2 ms, flip angle of 4°.

Mesh Position C_1 C_3 C_5 C_6 C_{12} C_{23} C_{56} C_{67} Cap. value [pF] 620 640 790 979 640 550 1700 4420 2220 840

Table 1. Capacitor values at their corresponding mesh position of half the xenon body coil, as it is symmetrical along the vertical line. Single subsripts indicate endring capacitors and double subscripts indicate leg capacitors.

Figure 3. ventilation images of 20 mm coronal slices of a healthy volunteer (top) and its corresponding B_1 maps (bottom).

Results and Discussion: Fig. 2 shows preliminary in-vivo images obtained from a healthy volunteer along with their corresponding B_1 maps, both show a high degree of spatial homogoneity . A whole body asymmetric birdcage transmit receive coil is demonstrated for hyperpolarised 129 Xe MR lung imaging. In future work the coil will be used as a transmit-only coil in conjunction with a custom receive array. References: 1 De Zanche et al,. MRM

array. References: De Zanche et al., MRM 2 (1):201 211 (2005) 2 ESMANA #224 (2006) 3 Leifor

53(1):201-211 (2005). ²ESMRMB #824 (2006). ³Leifer

et al,. JMR 124(1): 51-60 (1997). ⁴Parnell et al,. JAP 108:064908 (2010). *Acknowledgements: EPSRC. EP/D070252/1.*