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INTRODUCTION: Real-time imaging using non-Cartesian k-space trajectories can yield images with excellent quality. Very high acceleration rates with parallel
imaging are possible when using non-Cartesian strategies due to oversampling of the center of k-space. However, reconstruction methods such as through-time
radial generalized autocalibrating partially parallel acquisitions (GRAPPA) [1] and conjugate gradient sensitivity encoding (CG-SENSE)[2] are computationally
demanding, leading to long reconstruction times and unacceptable latency for real-time acquisitions. CG-SENSE has been shown to work with low latency by
moving from regular computational hardware to graphical processing units GPUs[3]. No such transition has been shown for non-Cartesian GRAPPA. In this work,
we present a hybrid (CPU- and GPU-based), fully auto-calibrated, fast reconstruction implementation for through-time radial GRAPPA. The main motivation for
using radial GRAPPA was its k-space driven calibration that provides very robust reconstructions from undersampled acquisitions. Unlike CG-SENSE, radial
GRAPPA does not involve multiple iterations that may take too long to achieve good image quality for low latency applications.. Results on the performance for
both radial GRAPPA weights calculation and image reconstructions are presented for varying rates of acceleration.
METHODS: Software Implementation: The radial GRAPPA process can be broken down into two separate components: (1) calibration, implemented using
multi-threaded CPU programming, and (2) image reconstruction, completely performed on a GPU (Figure 1). Gridding was performed on the GPU using real-time
GRAPPA operator gridding (RT-GROG) [4], a parallel imaging based approach with very low latency. A 2x-oversampled grid was used for gridding accuracy [5].
Memory intensive calibration processes were implemented on the CPUs, permitting asynchronous calibration and reconstruction [4,6]. Note that weight calculation
processes could be ported to GPUs, if multiple GPUs are present on the system. The Atlas library (http:/math-atlas.sourceforge.net/) was used for matrix
operations during calibration, and the OpenMP library (http://openmp.org) was used for parallelization. Reconstruction was performed on the GPU, using CUDA
4.0 (http:// http://developer.nvidia.com/cuda-toolkit-40) which includes the CuFFT library used for FFT operations.
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Figure 1. Schematic depiction of calibration (red) and reconstruction (blue) processes.| estimation were computed at once. Hence, lower acceleration rates
Performances of the operations in black boxes do not depend on acceleration rate. required more matrix operations on smaller matrices (smaller load,
lower resource utilization), while higher acceleration rates used fewer matrix operations but on bigger matrices (bigger load, higher resource utilization) to ensure
better performance for higher acceleration rates. Performance was measured separately for both image reconstruction and weight estimation for datasets with
varying number of coils, varying number of repetitions through time, and varying acceleration rates.
MRI: MRI was performed on a 1.5T Siemens Espree scanner (Siemens, Erlangen, Germany). Acquisition parameters were: acquisition matrix=144x256,
TR=2.64ms, FOV=300mm, BW=1115Hz/px. Imaging was performed with prior written informed consent and local IRB approval in three healthy volunteers, and
not breathholding or EKG gating was employed during the acquisition of either the calibration or undersampled datasets.
RESULTS: Figure 2 shows the execution times for calibration and reconstruction. RT-GROG weights were calculated (on average) in 0.098 seconds for a 12 coil
dataset, and in 0.120 seconds for a 15 coil dataset. Radial GRAPPA weights calculations were more time consuming, though performance depended significantly
on the calibration data size and the acceleration rate. Weights calculated from 30 repetitions through time provided acceptable image quality, while the best image
uality was obtained with 80 repetitions. Short-axis full FOV, systolic and diastolic cardiac images (rate 9, 42 ms temporal resolution) are presented in Figure 3.
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Figure 3. Radial GRAPPA images reconstructed from 12 coil,
144x256, rate 9 radial acquisition; 16 projections were used during
reconstruction of these real-time cardiac imaging examples. From
left to right: full FOV image, systolic image (1.6x), diastolic image
(1.6x).

Acquisition time: 42 ms

Reconstruction time: 33 ms (includes data transfers to/from GPU
and RSS combination).
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