More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPU
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Introduction: We further accelerate the Illinois Massively Parallel Acceleration Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT
MRI) package to approach clinically-acceptable times while still taking advantage of a variety of advanced image acquisitions and reconstruction techniques. The
improved IMPATIENT implemented a faster Toeplitz-based iterative image reconstruction method, whose computation time is further reduced by an optimally tuned,
GPU-accelerated gridding implementation. We demonstrate that the Toeplitz code running on a NVIDIA Tesla C1060 (field-corrected, SENSE) can reduce a one-week
long, non-Cartesian 3D 1mm?® high-resolution, whole brain DTI reconstruction (4-channel acquisition) to 4.3 hours.

Method: IMPATIENT MRI provides two strategies (brute force [1] and Toeplitz) to solve the following convex optimization problem:
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where p is the image to be reconstructed, F is a matrix that models the acquisition physics, d is the vector of measured data, C is a regularization matrix, W is an
optional diagonal weighting matrix, and /3 is the regularization parameter. Both techniques handle arbitrary non-Cartesian acquisitions, magnetic field inhomogeneity
correction [3], multiple coil acquisition and SENSE reconstruction, and regularization (including both Tikhonov and /;-based regularization strategies). The brute force
strategy implements an exact evaluation of the system model, but has a high computational complexity [5]. The Toeplitz strategy takes advantage of the Toeplitz
formulation for fast implementation of system matrix computations, and field inhomogeneity correction is performed via time segmentation [3]. In addition, for the
Toeplitz-based strategy, we use gridding to speed up the computation of a convolution kernel resulting from the toeplitz structure of F¥F. The operator product F*F
involves both forward (F) and adjoint operators (F™) for non-Cartesian trajectories and field inhomogeneity compensation. To solve Eq. (1) by the conjugate gradient
(CG) method, two dense matrix-vector multiplications are required by F"'F every iteration. With a time-segmented field map approximation, the product F*'F can be
reduced to a discrete convolution using the Toeplitz structure as follows:
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where a, (t,,) is the Hanning window interpolator for the k™ time segment at time t,, of the m™ k-space location, w, is the field inhomogeneity measured at the n voxel

coordinate, Qy is the convolution structure that permits the fast evaluation of F*F via the FFT [6,7]. Normally, Q, can be pre-computed before the scan since its
computation involves only the k-space trajectory and the image size. However in the diffusion application, motion-induced phase results in random shifts to the
trajectory for each shot. Prior to entering the CG step, the Toeplitz reconstruction algorithm also computes the vector F*'d, whose definition is mathematically similar to
Qk. However, Qy requires considerably more computation time and memory because it oversamples the input space two-fold in each dimension. Therefore, the
complexity of the Toeplitz reconstruction far exceeds the complexity of reconstructions based on gridding and the FFT. Hence exact evaluation of Q. on GPU has been
impractical in clinical settings, especially for high-resolution, three-dimensional data. Alternatively, gridding provides an approximation of the exact computation of
Qx’s. The GPU-accelerated gridding algorithm [2] in IMPATIENT is an optimized, output-driven algorithm, where every output pixel is computed by a single thread
and the input k-space data is shared among all the threads. Input binning is used to ensure the output-driven gridding algorithm run in the same O(N) time as the
traditional input-driven approach does on CPU. This is achieved by sorting the k-space points into bins with non-uniform capacity and regular k-space coordinates.
Overlapping computations on CPU and GPU is used to further improve the load imbalance caused by varying bin sizes. Our reconstruction workstation is an Intel Xeon
X5650 system, with a Tesla C1060 GPGPU card. The GPU optimization includes space compaction, input binning, data regularization, thread coarsening, scatter-to-
gather transformation, memory tiling, page-locked memory allocation, common sub-expression elimination.

Results: Table 1 shows the performance comparison. Although the data would normally be amenable to gridding in-plane and a separate FFT across the slice direction,
due to motion-induced phase errors in diffusion, the resulting k-space trajectories are truly 3D and change for each data set. Using a Tesla C1060 GPU, we tested three
3D datasets coming from a multi-shot stack of constant density spirals with ~65ms readouts per shot with matrix size in the x and y directions increased by increasing
the number of spiral interleaves for each phase encode and the z dimension increased by increasing the number of phase encoding steps. All reconstructions execute 10
conjugate gradient iterations and 8 time segments. The ‘Time (min)’ row shows the execution timings, comparing Toeplitz-based iterative regularized SENSE
reconstructions using single-precision, floating-point arithmetic with a hand-tuned, single-thread Matlab code performing the similar calculation on a CPU. In summary,
we observed a speedup of more than 48x in single precision mode. A resulting example image from a high resolution diffusion imaging scan reconstructing with GPU
can be seen in Figure 1. For reconstruction of a full 3D multi-slab DTI reconstruction, twenty-eight 240x240x32 volumes must be reconstructed for the whole data set.
Access to nodes with multiple GPUs can provide trivial acceleration over the multiple volumes to be reconstructed.

Dataset 128x128x16 (SENSE, 4coils) 240x240x32 (SENSE 4coils) 512x512x32 (SENSE,4coils)
Matlab Toeplitz Speedup Matlab Toeplitz Speedup Matlab Toeplitz Speedup
Time (min) 62.31 1.28 48.68x 380.28 9.30 40.89x 1520 (est.) 83.41 N/A

Discussion: This paper describes the second-generation IMPATIENT MRI reconstruction toolkit. We implemented two reconstruction strategies to provide a choice of
the tradeoff between accuracy and speed. Brute force, aiming for accuracy, evaluates the system matrix exhaustively with no approximations. Conversely, Toeplitz
emphasizes speed more than accuracy. The large increase in reconstruction speed provided by the Toeplitz strategy enables higher resolution 3D data and more coils.
These improvements will enable advances in 3D non-Cartesian sequences, such as cones and stacks of spirals, by reconstructing images in reasonable amounts of time.
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Figure 1: Left: Imm isotropic diffusion weighted image
from a 3D multi-slab multi-shot acquisition
reconstructed on a Tesla C1060 GPU using SENSE and
field correction. Right: An FA map, with color
indicating the primary direction of diffusion, resulting
from 6 diffusion weighted images that took 4 hrs to
reconstruct with GPU compared with one week for
reconstruction on a CPU.
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