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Introduction  
Image Reconstruction in MRI is addressed by a variety of techniques depending on the specific data acquisition scheme and the information one wants to resolve. For 
parallel imaging, SENSE [1] and SPIRiT [2] can be used. For chemical shift imaging (CSI), such as metabolic imaging using hyperpolarized 13C [3], one may acquire 
data with different echo times repeatedly and subsequently separate the metabolites’ data using IDEAL [4]. To correct for B0-artefacts, Multi-Frequency Interpolation 
(MFI) has been applied successfully [5,6]. Goal of this work is the combination of all the above mentioned methods in a single generalized encoding formula which can 
be solved using Conjugate Gradient (CG) methods. 
 

Theory 
The MRI signal of an image Im(r) of a metabolite m with chemical shift fm, defined on a domain Ω, acquired with a k-space 
trajectory k(t), echo times To and a set of coils with sensitivities sn(r), given the B0-field inhomogeneity ν(r), reads (ܫܧ)௡௢(ݐ) = ∑ ׬ ஐ	℮(ݎ)௡ݏ(ݎ)௠ܫ ൫−݇(ݐ)்ݎ − (ݎ)ߥ) + ௠݂)(ݐ + ௢ܶ)൯௠   .ݎ݀
whereas ℮(ݔ) = exp	(2ݔ݅ߨ). To separate temporal (t) and spatial coordinates (r) in the exponential term, MFI samples the 
range of values ν(r) at supporting points νl defining basis functions blo(t) and determines coefficients clo(r) (e.g. using least 
squares fitting) such that   ℮(−ݐ)(ݎ)ߥ + ௢ܶ)) ≈ ∑ ܿ௟௢(ݎ)തܾ௟௢(ݐ)௟ . 
Hence the approximate encoding reads (ܫܧ)௡௢(ݐ) ≈ ∑ ׬ ஐ	℮(ݎ)௟௢ܿ(ݎ)௡ݏ(ݎ)௠ܫ ௠,௟(ݐ)௠௢݌(ݐ)௟௢ܾ(ݎ்(ݐ)݇−) ݎ݀ =   (ݐ)௡௢(ܫܵܥܩܤ)
The operator G thereby describes the mapping from the potentially non-cartesian k-space data to image space and can be implemented using gridding [7] or nuFFT [8]. 
Given measured data dno(t), the task of reconstructing Im(r) in a least squares sense reads minூ‖ܫܵܥܩܤ − ݀‖. Solving this task using CG methods means a generaliza-
tion of CG SENSE to MFI and CSI is called genCGSENSE. 
Alternatively, in particular if no sensitivity maps are available, a SPIRiT based approach can be used, i.e. coil images Jmn(r) = Im(r)sn(r) are reconstructed by finding the 
minimum of a linear combination of ‖ܬܥܩܤ − ݀‖ (data consistency) and ‖ܬܭ −  with a standard SPIRiT-kernel K. Again, the task can be (calibration consistency) ‖ܬ
solved via CG methods and is referred to as genCGSPIRiT. 
 

Methods 
The ISMRM MRI Unbound Double Vision (DV) spiral trajectory data [9] was reconstructed using standard CG SENSE and the proposed genCGSENSE using the provided 
sensitivities and B0-map. Note that since no CSI is involved and only a single echo time is acquired, the method is similar to the one presented in [6]. 
Additionally, a water phantom containing 4 tubes of different 13C-sensitive chemical substances (acetate, lactate, alanine and glycine) was imaged on a 3T GE HDx 
scanner (GE Healthcare, Waukesha, MI) using a dual-tuned 4-channel rat coil (Rapid Biomedical, Würzburg, Germany). Data was acquired at 13C resonance frequency 
using a single shot spiral trajectory (FOV=80 mm, nom. resolution 32x32) and 7 echo times (ΔTE=1.1 ms). A 1H-B0-map was acquired using a Cartesian gradient echo 
sequence at two echo times (ΔTE=1.0 ms) and scaled by the gyromagnetic ratios of 1H and 13C. The data was reconstructed to a 128x128 matrix using IDEAL and 
standard SPIRiT [10] as well as by applying genCGSPIRiT with and without MFI. 
 

Results 
The genCGSENSE reconstruction [elapsed time (per slice): 33.6 sec (for computing MFI coefficients clo(r)) + 101.5 sec (for 15 CG iter.) using Matlab (The Mathworks, 
Natick, MA) and a 3 GHz processor] of the DV data (Fig. 1) shows reduced blurring as compared to standard CG SENSE [6.0 sec for 15 CG iter.]. The typical B0-
artefacts could be removed completely or at least reduced significantly. The few remaining circular distortions correspond to very steep slopes in the B0-map, whereas 
the Gibbs-ringing observed at these artefacts indicates that this error is due to the limited bandwidth of the acquisition and not due to the reconstruction technique. 
The genCGSPIRiT reconstructions of the 13C phantom [10 CG iter., 4.4 sec w/o MFI, 6.3 sec+16.4 sec w/ MFI] show improved SNR as compared to IDEAL [0.2 sec (for 
spectral decomposition) + 4*0.5 sec (for 10 CG iter. of 4 metabolites)] for two of the metabolites (acetate and lactate) even without MFI. Since also signal from other 
metabolites is visible in the reconstructions, e.g. alanine in the glycine image, the spectral domain might not have been sampled sufficiently by the applied echo times 
and this undersampling might affect IDEAL and genCGSPIRiT in a different way. By including MFI, the SNR is significantly improved for all metabolites. Furthermore, 
the signal peaks – in particular for acetate and lactate – appear more centered within the tubes indicating reduced blurring. 
 

Discussion and Conclusion 
The proposed generalized reconstruction techniques genCGSENSE and genCGSPIRiT have been successfully applied to reduce B0-artefacts and/or to resolve multiple chemi-
cal shifts. In particular their general formulation makes them a powerful reconstruction framework for various MRI reconstruction purposes, i.e. they can handle MRI 
data independently of a particular acquisition protocol. In contrast to IDEAL, no additional data processing is required. Furthermore, the proposed methods make use of 
the superior convergence properties of the CG algorithm, i.e. they are linear, very robust and can be regularized in case of ill-posed, i.e. low-SNR, data. 
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(ݐ)௠௢݌ = ℮൫− ௠݂(ݐ + ௢ܶ)൯ ܾ௟௢(ݐ) = ℮൫−ߥ௟(ݐ + ௢ܶ)൯ (ܵܫ)௠௡(ݎ) = (ݎ)௠௡௢௟(ܬܥ) (ݎ)௡ݏ(ݎ)௠ܫ =  (ݎ)௢௟ܿ(ݎ)௠௡ܬ
Definitions: 

(ݐ)(ܫܩ) = ׬ ஐ	(ݎ்(ݐ)݇−)℮(ݎ)ܫ (ݐ)௡௢(݀ܤ)  ݎ݀ = ∑ ݀௠௡௢௟(ݐ)݌௠௢(ݐ)ܾ௢௟(ݐ)௠,௟  

Fig. 1: Reconstructions of slice 5 of the DV data. 
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