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Introduction: For full-brain coverage simultaneously acquiring multiple slices can 
significantly improve acquisition time (1-5). In this work we focus on the single-shot two-
dimensional (2D) EPI acquisition methods important for improving temporal resolution in 
fMRI and acquisition efficiency in diffusion imaging. The EPI compatible approach of (6) 
examined ‘‘blipped-CAIPI’ to achieve slice dependent spatial shifts in the PE direction. The 
slice-GRAPPA reconstruction fits a linear model to determine the kernel and unaliases the 
shifted slices with a convolution. Controlling this unaliasing process is extremely important 
given the presence of noise and artifacts in fMRI and diffusion. In this work we test a 
constrained optimization technique which constrains the aliasing artifact and show that this 
method can reduce the amount of slice artifact arising in the unaliasing process.  
Theory: A linear model can be used to relate the simultaneously acquired slices across all 
channels to a given slice/channel of interest. In slice-GRAPPA reconstruction, channel ݆ data 
from slice ݖ (the product of coil sensitivities ܥ and a true magnetization ߩ) can be unaliased 
using all of the collapsed images:      The fitting 
kernel ܭ is spatially smooth and can be solved for efficiently in the frequency domain.  The 
slice-GRAPPA method involves a least squares solution with a collapsed calibration matrix, 
which is a sum of contributions from the simultaneously excited slices. The overall fitting 
depends on the range of this calibration matrix, where ideally only data from the slice of interest 
will propagate:                    However, there are often 
dependencies between the slice contrasts (linear dependency of slice calibration matrices), as 
illustrated in Figure 1. In addition, non-common contrast can result in data overfitting that 
manifests as inter-slice artifacts. The reduction of these artifacts is the focus of our work. By 
looking at the singular value decomposition (SVD) of each slice calibration matrix one can 
easily determine a basis for the contrast of the slices ( ଵܷ for slice ݖଵ is shown in Figure 1). The 
non-common contrasts can then be determined through orthogonal projection, i.e. the notation ݖଵ\ݖଶ represents the projection of the calibration matrix from ݖଵ onto the space orthogonal to 
the basis from ݖଶ. Excluding undesirable contrast from ݖଵ\ݖଶ would require a calibration matrix (⊥ ଶܷ)(⊥ ଶܷ)∗ ଵܷܦଵ ଵܸ∗. Thus, an alternative optimization problem can be formulated to 

separate the slices while 
constraining the relative 
amount of artifact ߝ. In our 
model the norm of the induced 
artifact from each ݖ\ݏ 
calibration matrix is restricted 

relative to the norm of the original image ݖ. This convex optimization problem can be solved 
using log-barrier or interior-point methods (7) that ensure a globally optimal solution. 
Methods and Results:  
All experiments were performed on a Siemens TIM Trio scanner with a 32-channel head array 
coil. Single shot EPI was acquired with TE/TR = 64 ms / 5.6s, with a 205×205 mm^2 FOV, 
2.5mm isotropic resolution, 6/8 partial Fourier, 82 matrix, and 51 total slices. Using averaging 
across 10 repetitions we constructed a reduced noise “gold standard” data set. We compared the 
slice-GRAPPA method to the constrained approach for various constraint tolerances ߝ =1݁ିଵ,… , 1݁ିଷ and SMS acceleration factors ܴ = 3, 5. Figure 2 illustrates the prevalence of 
slice artifacts using slice-GRAPPA for 3× SMS acceleration and FOV/2 CAIPIRINHA slice 
shift. Each row shows the 5×5 kernel ܭ௜ for a given slice ݅ applied across the reduced noise 
slices. Therefore, the sum across each row corresponds to a final unaliased image. As you can 
see by looking across each column non-relevant slices are being used to overfit the data. Note 
that we have increased the contrast of the artifact images (off-diagonal) to 4% of the original 
image peak intensity. Figure 2 shows that the artifacts have been significantly reduced and the 
overall intensity is substantially decreased with the constrained optimization. Assuming an ߝ = 1݁ିଶ for the non-common contrast, we see a decrease from 4.1% to 0.15% average relative 
error per-slice, for the 3× SMS acceleration. For the case of 5× SMS (FOV/2 slice shift) we see 
a decrease from 4.4% to 0.14% average relative error per-slice. 
Conclusion: The inter-slice artifact constrained SMS optimization model can be used to 
decrease slice artifacts by more than 10 fold. The improved kernels can be used in both fMRI 
and diffusion weighting studies for increased accuracy. The convex model ensures optimal 
solutions given the constraints and is implemented easily using readily available optimization 
packages.  
References: 1. Larkman DJ. et al, JMRI, 2001:13:313 2. Feinberg DA. et al, MRM 2002:48:1 3. 
Breuer FA et al, MRM, 2005:53:684 4. Moeller S. et al, MRM, 2010:63:1144 5. Feinberg DA. et al, 
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Figure 1: Convolution across calibration data from each 
slice ܼ௜ is combined for 3× SMS kernel fitting. SVD of 
slice calibration matrix is illustrated. The dependence of 
contrast is shown with decrease of largest singular values. 
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Figure 2: Comparison of slice-GRAPPA and constrained 
kernel fitting. Each row represents a 5×5 slice kernel ܭ ௜ 
applied across the reduced noise slices.  
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