
Figure 2:  
Lower row shows the 
results using the 
region growing 
technique [3]; upper 
row shows the results 
using our proposed 
approach. Yellow 
arrows indicate the 
locations of water/fat 
swaps.  
(a) Field map, 
(b) water, (c) fat, 
(d) fat fraction  
(Fat / (Water + Fat). 
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Introduction: The quantification of myocardial and pericardial fat is gaining clinical interest due to its association with coronary artery disease [1]. 
While it has been demonstrated that multi-echo Dixon methods can detect small volumes of visceral fat, field map estimation presents an obstacle for 
robust water/fat separation using Dixon-based techniques. The IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least 
squares estimation) method [2] provides an iterative process to simultaneously estimate the field map, water and fat components. However, this 
might demonstrate water/fat “swaps” in the case of abrupt changes in the field (a “swap” is defined as assigning the main signal in a water-dominant 
voxel as fat, or vice-versa). Several techniques have been proposed to address this problem [3-6]; however, they are either computationally expensive 
or less reliable in the presence of rapid changes of field offsets, such as those commonly seen near the heart. In this work, we demonstrate a novel 
fast field map estimation technique for which an efficient and reliable convex-relaxation algorithm called continuous max-flow (CMF) [7-8] is 
applied. The CMF approach addresses the proposed non-convex problem, and can be easily accelerated using modern parallel computation platforms. 
Our approach was tested in cardiac images obtained at 3 Tesla, where challenging cases of field inhomogeneities are more frequently encountered.   

Methods: In Dixon methods, the signal ܵ(. )	from each voxel is represented by		ܵ(ݐ௡) = ൫ߩ௪ .௙ߩ	+ ݁௜ଶగ	௙ೢ 	௧೙൯. ݁௜ଶగ	ఝ	௧೙, where ݐ௡ is the echo-time 
(TE) shift	(݊ = 1,… , 	 ;are the water and fat components, respectively	௙ߩ ௪ andߩ	;(ܰ ௪݂	(Hz) is the fat-water relative frequency shift; ߮	(Hz) is the 
local frequency offset. Using the VARPRO formulation [4], the problem is reduced to a 1-D non-convex optimization problem: 

min Γ(߮) ≔ minฮൣܫ − 	Ψ(߮).Ψற(߮)൧. ܵฮଶଶ              where  Ψ(߮) 	= 	 ൥݁௜ଶగ	ఝ	௧భ 	 ݁௜ଶగ		(ఝ	ା	௙ೢ )	௧భ⋮ 	 ⋮݁௜ଶగ	ఝ	௧ಿ 	 ݁௜ଶగ	(ఝ	ା	௙ೢ )	௧ಿ൩	,  	ܫ is the identity matrix, and	ற	denotes the pseudo-inverse. By imposing a spatial smoothness on the field map, the unknown value of the field offset ߮	can be estimated by minimizing the following cost function:   ො߮ = argmin∑ Γ(߮) + .ߤ	 |∇ଷΓ(߮)|ெ௠ୀଵ 	,	where ො߮ 		is the estimated local field offset, ܯ	is the number of voxels, and 	ߤ		is a trade-off parameter to control the spatial smoothness. When acquiring images at equally spaced TEs, Γ(߮)	is 
periodic with a period of		1 ⁄ܧܶ∆ . Consequently, the limiting boundaries for ො߮ 	are set to [±1 (2. ⁄(ܧܶ∆ ]. The first stage of our approach is limiting 
the estimated ො߮ 	of each voxel to a small interval (typically, 5% of the whole interval), which is obtained by assigning each voxel to a specific label 
using the CMF algorithm. This step locates, for each voxel, a certain range of frequency offsets where the global minimum resides. The second stage 
employs the labeled voxels as initial values for the IDEAL iterative process, and employs a gradient-descent based method to achieve the exact field 
offset value. Our two-stage approach is characterized by significantly less processing time and a robust separation in case of abrupt variations in field 
inhomogeneities as in cardiac images.  

Results: Six cardiac datasets from healthy volunteers were acquired and compared with the region-growing technique [3]. Cardiac images were 
acquired with fast multi-echo GRE sequence using 32-channel torso-coil on a 3.0T (Discovery MR 750, GE Healthcare, Waukesha, WI). Data were 
acquired with different numbers of echo times (4, 6 and 8 echoes), to examine the reliability of the technique. A representative example is shown in 
the figures below, where the field map from our proposed method is compared to [3], with the corresponding water/fat separations. The data shown 
were acquired at 4 interleaved echoes, separated by 1.156 msec and first echo at 2.356 msec. Water/fat swaps have been clearly avoided by our 
approach. Moreover, the processing time is significantly reduced (~2.5 min/image vs. ~7 min/image using [3]).  

 
 
 
 

 
 

 
 
 

 
  

  
 

Conclusion: In this work we demonstrated the feasibility of a novel technique that allows rapid and robust field map estimation. We applied a two-
stage approach, where the CMF (first stage) provides a good initial estimate for the IDEAL process (second stage). The main advantages of our 
technique are: 1) less processing time; 2) the global optimization based algorithm helps avoid field map errors that cause water/fat swaps in the 
presence of sudden change in B0, particularly in cardiac images. 
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Figure 1: Output of the CMF 
stage, where the field offset 
of each pixel is assigned 
(labeled) to a small range of 
frequency offsets. This field 
map is used as the initial 
estimate of the field map in 
the IDEAL iterative process. 
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