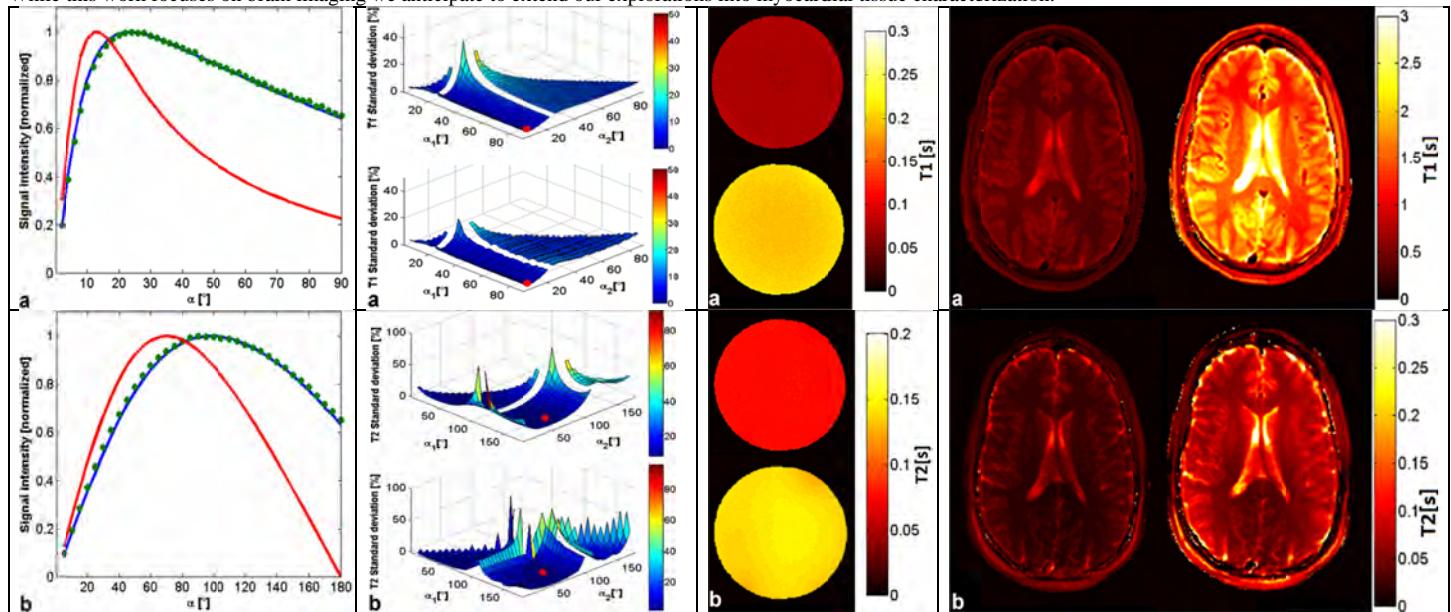


# Correction of slice profile deformations and estimation of optimal flip angles to enable accurate $T_1/T_2$ mapping using 2D variable flip angle techniques


Matthias Alexander Dieringer<sup>1,2</sup>, Michael Deimling<sup>1,3</sup>, Florian von Knobelsdorff-Brenkenhoff<sup>1,2</sup>, Andreas Greiser<sup>3</sup>, Jeanette Schulz-Menger<sup>1,2</sup>, and Thoralf Niendorf<sup>1,2</sup>  
<sup>1</sup>Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany, <sup>2</sup>Experimental and Clinical Research Center (ECRC), Charité Campus Buch, Humboldt-University, Berlin, Germany, <sup>3</sup>Siemens Healthcare, Erlangen, Germany

**INTRODUCTION** Quantitative MR is in the research spotlight for non-invasive tissue characterization using parametric mapping of  $T_1$  and  $T_2$ . Rapid and accurate  $T_1$  and  $T_2$  quantification techniques using variable flip angles (VFA), such as DESPOT1/2, have been proposed [1] for the brain. DESPOT1/2 comprises (i) 3D RF-spoiled fast low angle shot (FLASH) acquisitions for  $T_1$  quantification and (ii) 3D balanced steady state free precession (b-SSFP) acquisitions for  $T_2$  quantification, each including at least two acquisitions using different flip angles [1]. For 2D acquisitions, short repetition times (TR) evoke  $T_1$  and flip angle dependent saturation phenomena that deform the slice profile [2,3] and hence bear the potential to deem  $T_1$  and  $T_2$  quantification inaccurate. Therefore this study examines the impact of slice profile deformations on 2D  $T_1$  and  $T_2$  quantification using VFA in simulations and phantoms. To tackle the detrimental effects of slice deformation, a correction approach is proposed that enables accurate quantification of  $T_1$  and  $T_2$ . Furthermore, we propose a new method for deriving optimum flip angles for 2D DESPOT1/2 to enhance the accuracy of parametric mapping. The applicability of this approach is demonstrated in phantom and in vivo studies.

**METHODS** Flip angle dependent signal intensities were calculated in the steady state using Bloch simulations and compared with experimental data derived from a 3.0 T MR scanner (Siemens Verio, Siemens Healthcare, Erlangen, Germany). For this purpose an oil phantom was used with values of  $T_1=200\text{ms}$  and  $T_2=145\text{ms}$  determined with standard IR and SE sequences.  $B_1$ -homogeneity was verified using the PhiFA CUP approach [4]. The impact of the signal change on the quantification of  $T_1$  and  $T_2$  using two flip angles of the uncorrected VFA approach were calculated. Using original rf-pulse shapes in Bloch simulations of the slice profile, we sought to correct for the discrepancies between theoretical and measured signal. Furthermore, we used three flip angles for parameter quantification to achieve better stability, where one flip angle corresponded to the maximum signal. To determine the optimum flip angle set considering noise contributions, simulations were performed. Eight sets of possible extreme noise configurations were simulated (signal+noise and signal-noise for all flip angles) and the standard deviations were calculated for all possible combinations and compared to the measurement.  $T_1$  and  $T_2$  quantification were conducted in the phantom and in vivo with flip angle sets causing minimal errors. Brain images were obtained (FLASH and b-SSFP, TE/TR=2.5ms/5ms, voxel size (0.8x0.8x8) mm<sup>3</sup>, 32 channel receive head coil) with optimal flip angles for DESPOT1/2 and for the corrected approach and  $T_1$  and  $T_2$  maps were calculated. The  $T_1$  map resulting from each approach was used as a basis for the  $T_2$  quantification.  $B_1$  correction was accomplished using relative  $B_1$ -Mapping with the standard "rf-map" routine on the scanner.

**RESULTS** Figure 1 illustrates the discrepancy between the theoretical, the measured, and the slice profile corrected signal intensity. The corrected data using Bloch simulations revealed good agreement with the measured signal intensities for FLASH and b-SSFP. The flip angle resulting in maximum signal was found to be 23° for FLASH and 103° for SSFP, which does not correspond to the theoretical Ernst angles (FLASH=13°, SSFP=81°). The minimum error of 4.6% occurred for a set of 7°/23°/87° for  $T_1$  quantification (Fig. 2a) while an error of 4.8% occurred for a set of 60°/103°/151° for  $T_2$  quantification (Fig. 2b). Figure 3 and 4 shows  $T_1$  and  $T_2$  maps obtained from the oil phantom and from the brain of a healthy volunteer. DESPOT1/2 underestimated  $T_1$  and  $T_2$  in the phantom by 63% resp. 47%. The corrected VFA approach agreed well with the phantom's  $T_1, T_2$  (-1%, +3%). *In vivo* DESPOT1/2 yielded  $T_1/T_2$  of  $378\pm17\text{ms}/22\pm2\text{ms}$  for white matter and  $T_1/T_2$  of  $537\pm22\text{ms}/34\pm5\text{ms}$  for gray matter. The corrected approach revealed  $T_1/T_2$  of  $1140\pm90\text{ms}/63\pm3\text{ms}$  for white matter and  $T_1/T_2$  of  $1770\pm90\text{ms}/99\pm19\text{ms}$  for gray matter, which is in the range of  $T_1$  and  $T_2$  values reported in the literature [5].

**DISCUSSION AND CONCLUSIONS** Our results demonstrate severe  $T_1, T_2$  quantification errors due to slice profile deformations in fast 2D VFA acquisitions. The proposed correction method based on Bloch simulations render the 2D VFA quantification of  $T_1$  and  $T_2$  accurate. The evaluation method calculating optimum flip angles to mitigate errors caused by noise could be resembled by measurements. Parameter mapping *in vivo* using slice profile simulations may remain challenging when partial volume effects have to be considered. SNR constraints of DESPOT1/2 remain a concern for accurate tissue characterization using parametric mapping of relaxation times. This suggests that the traits of dedicated surface coil arrays targeting the anatomy of interest will be beneficial to provide further SNR improvements. While this work focuses on brain imaging we anticipate to extend our explorations into myocardial tissue characterization.



**Figure 1:** Theoretical (red line) vs. measured (green dots) vs. simulated slice profile corrected signal intensities (blue line) for FLASH (a) and b-SSFP (b) over different flip angles. The corrected signal intensities agree very well with the measurement.

**Figure 2:**  $T_1$  (a) and  $T_2$  (b) standard deviation [%] from simulation (top) and measurement (bottom) using 3 flip angles and a noise fraction of 5%. Optimum flip angles were found at 7°/23°/87° for  $T_1$  quantification and 60°/103°/151° for  $T_2$  quantification.

**Figure 3:**  $T_1$ - (a) and  $T_2$ - (b) map with conventional 2D-DESPOT1/2 (top,  $T_1=74\pm6\text{ms}$ ,  $T_2=76\pm2\text{ms}$ ) and the correction method (bottom,  $T_1=198\pm7\text{ms}$ ,  $T_2=151\pm17\text{ms}$ )

**Figure 4:**  $T_1$  map (a) and  $T_2$  map (b) using conventional DESPOT1/2 (left) and the corrected method (right). DESPOT1 resulted in  $T_1$  values  $537\pm22\text{ms}$  and  $378\pm17\text{ms}$ ,  $T_2$  values of  $34\pm5\text{ms}$  and  $22\pm2\text{ms}$  for gray and white matter, respectively. The corrected method resulted in  $T_1=1770\pm90\text{ms}/1140\pm90\text{ms}$ ,  $T_2=86\pm17\text{ms}/63\pm3\text{ms}$ , which is in good agreement with the literature.

1) Deoni SC et. al., Magn Reson Med 2003;49:515-526, 2) Parker GJ.M et. al., Magn Reson Med 2001;45:838-845, 3) Deimling M. et. al. SMRM 1986;p.926, 4) Santoro D et. al, ISMRM 2010;p.4943, 5) Stanisz GJ et. al, Magn Reson Med. 2005 Sep;54(3):507-12.