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INTRODUCTION Compared to high-field MRI, ultra-low-field (ULF) MRI with B0 in the μT range has the advantages of 1) compatibility with metal objects, 2) 
system of a lighter weight and a lower cost, 3) higher T1 contrast, and 4) taking MRI and magnetoencephalography (MEG) simultaneously [1]. One 
difference of ULF MRI reconstruction from high-field MRI is the non-negligible concomitant field artifacts [2]. Considering these artifacts, the spatially 
encoded ULF MRI signal can be related to the spatial distribution of the magnetization using a linear equation [3], whose encoding matrix is too large to be 
practically inverted for image reconstruction. Alternatively, local magnetization phase in the encoding matrix can be first calibrated and subsequently 
reconstructed using Fourier transform [4]. However, this method cannot accurately describe the magnetization dynamics when the direction of the magnetic 
field making phase encoding is either (i) not in parallel with the magnetic field during read-out or (ii) not perpendicular to the initial magnetization. 
 Here we propose a two-stage space-frequency (x-f) hybrid formalism to accurately describe the dynamics of spatially encoded magnetization 
allowing arbitrary directions of the initial magnetization and phase/frequency encoding magnetic fields. This is particularly useful in ULF MRI where 
concomitant field artifacts can no longer be neglected. Compared to the full time-domain solver, the complexity of a 2D image reconstruction of n image 
pixels is reduced from O(n3) to O(n2) using fast Fourier transformed data and a linear equation solver. We present this method together with numerical 
simulations to demonstrate how concomitant field artifacts in ULF MRI can be corrected. 

METHODS To generate spatial encoded ULF MRI signal using a gradient g, ▽bz(r) = g = [gx gy gz]T, the total magnetic field b(r) consists of an ideal linear 
part bideal(r) = (B0 + g Tr) ez, and a concomitant field part bcon(r)= (-gzx/2+ gxz)ex+ (-gzy/2+ gyz)ey, where B0 is the strength of the measurement field, and ex, 
ey, ez are spatial unit vectors. We define ε=gmaxFOV/B0 to quantify the effect of the concomitant field, where gmax is the maximal amplitude among [gx gy gz] 
over the whole experiment. Typically, ULF MRI has 0.1 < ε < 1 and thus the concomitant fields bcon(r) cannot be ignored. To accurately describe the 
dynamics of magnetization precession in the read-out of an n-step phase-encoded ULF MRI experiment (1 ≤ n ≤ N), we first define a unit vector em(r, n) as 
the direction of the local magnetization m(r,n) = ρ(r)em(r, n) at the beginning of the read-out, where ρ(r) denotes the spin density at location r. The unit 
vector eb(r) denotes the direction of b(r), and es is the unit vector of the local sensitivity s(r) of a pick-up coil. The detectable non-DC signal at time t becomes 
the spatial integration of {ρ(r) m⊥(r, n)cos(γ|b(r)|t+ φ(r,n))s⊥(r)} over the whole FOV, where m⊥(r, n) and s⊥(r) are the magnitude of em(r, n) and s(r) 
perpendicular to eb(r). φ(r,n) is the angle between the projected component of em(r, n) and s(r) over a plane with its normal vector eb(r).  

Here, we propose that it is actually possible to separate the image reconstruction into two independent stages: first we use Fourier transform to 
estimate the distribution of magnetization precession spectra distributed over an iso-frequency curve in the real space for each frequency-encoded 
read-out. In this case, a linear equation describing a generalized phase encoding allows quantitative description of (i) the detectable component of the 
phase-encoded magnetization m⊥ as a function of r and (ii) a nonlinear relationship between the phases and the spatial 

coordinates along an iso-frequency curve. This is different from traditional MRI using idealized linear gradients, where m⊥ is 
constant such that there is  a linear relationship between magnetization phases and spatial coordinates along an 
iso-frequency straight line. Specifically, the Fourier transform of the signal(t,n) is 

 
Here we describe the signal as a function of frequency ω generated from the spatial integration of all magnetizations 

with a precession frequency γ|b(r)|=ω. J(r)=1/|∇(γ| b(r) |)| is the Jacobian corresponding to changes between Cartesian 
coordinate r and frequency coordinate ω.  

At each frequency ω0, N measurements signal(ω|ω=ω0,n) were used to solve for the spatial distribution of ρ(r|γ|b(r)|=ω0). Along a curve in the image 
domain whose Larmor frequency is ω0, we solved for ρ(r|γ|b(r)|=ω0)  over 2N locations in order to capture potential spatial phase variations faster than what 
is expected from the ideal linear gradients due to concomitant fields. Practically we imposed a prior constraint to minimize the L2 norm of Dρ(r), where D 
takes the difference between two neighboring data points. The same procedure was repeated for different ω0 to sweep over all frequencies of 
magnetization precession within the desired FOV in the read-out direction. The reconstructed image ρ(r) was finally interpolated over a 2D rectilinear image 
grid. 
 Our experimental setup (top figure) consists of coils for B0 = 50 μT (black), 
three gradient coils (red, orange, and blue) and a polarizing coil (not shown). 
Magnetic fields were calculated using the Biot–Savart’s law given the coil 
geometry. To focus on the concomitant field artifacts, we set s⊥(r) = 1 in this 

study. Concomitant fields were simulated in the cases of  ε =0 (B0 = ∞), and ε = 

2. The signal(t,n) over 128 phase encoding steps was calculated by numerical 
integration using 4096x4096 spatial grid points. All calculations were 
implemented on a PC in Matlab (Mathworks, Natick, MA). 

RESULTS  The computational time for the simulation was 2 s. The figure at 
right shows the reconstruction of a grid and brain phantoms in the cases of no 
concomitant field (ε = 0) and a strong concomitant field (ε = 2). In contrast to 
reconstructions using fast Fourier transform (FFT), the f-x hybrid method 
reduces the concomitant field blurring, image compression (horizontal cyan 
line), and distortion (cyan arrows) artifacts at the top and bottom of the FOV.  
DISCUSSION The presented x-f hybrid method reconstructs images efficiently even with strong concomitant fields (ε =2). However, similar to other 
methods, if concomitant fields cause non-uniform distribution of ∇|b(r)|, the loss in the spatial resolution cannot be corrected. The regularization parameter 
used in solving the linear equation should be tuned based on the condition of the encoding matrix in order to obtain the best results. While we demonstrated 
this x-f hybrid method in ULF MRI reconstructions, the method can be applied to nonlinear encoded high-field MRI, too. 
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