A Robust Algorithm Framework for Small DTI Samples
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Diffusion tensor imaging (DTI) is a very powerful technique with a great clinical and research potential. DTI allows one to perform a non-

invasive, in vivo tissue characterisation of human brain pathologies in relatively short acquisition times. The rotational invariants of DTI such as
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Figure 1. Diffusion tensors in ellipsoidal
form where the eigenvalues are equal to
the length of the main axes and the
eigenvectors are the directions.

especially sensitive to various artefacts such as cardiac pulsation, bulk head motion, etc. g 5122 \ﬁ{f
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We applied three methods of diffusion tensor estimation: weighted least squares (WLS) [6], RESTORE % £ i

based on the M-estimator [1], and the algorithm developed by us and based on the least trimmed squares @ 2: " " - -
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Figure 3. The deviation of the
estimated MD from the original value
equal to 2x10” mm’s™ as a function of
the number of outliers.

an apparent diffusion coefficient, fractional anisotropy, etc., have

established themselves as valuable biomarkers in various brain —
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disorders. The estimation methods play a key role in tensor

o

assessment and, in turn, in the consistency of potential diagnostic
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outcome. In clinical measurements, DTI data sets are typically

acquired with only a very few repetitions and might be strongly

Of
corrupted by artefacts. The robust statistics allow us to localize
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and erase the outliers caused by physiological noise [1,2].

However, the robust estimators in small samples present a rather “
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complicated problem [3-5]. In this work, we compare the

efficiency of different algorithms for small DTI samples that are
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(LTS) [2] and median absolute deviation (MAD) estimators. The  Figure 2. Angular deviation of the
. . . estimated main eigenvector from the
LTS algorithm exploits the trimmed squares of the arranged original direction as a function of the

n number of outliers.
min Z(r,z 1N
residuals: i where r; are the arranged residuals

r1<r;<...rn, N is the number of applied gradient directions, and / is a truncation factor [2]. In order to
improve the estimation in the case of small samples, we used an objective function based on the MAD

estimator 7"” ~ MAD(r) = median[rf — median(r])] . We used simulations of the diffusion tensor with
eigenvalues [1.5; 1.5; 3.0]x10”* mm?*s™ for 6, 12 and 30 diffusion encoding gradients. In each case we
artificially corrupted the signal attenuation by the Rician noise (SNR = 10) and a series of outliers.

Results and Discussion

In order to provide a statistical comparison, we simulated 100 diffusion tensors for each data set (see, for
example, Figure 1). Using the above three algorithms we evaluated angular deviations of the estimated
main eigenvector from the original direction (see Figure 2) and of the estimated mean diffusivity (MD)
from the original value, 2x10° mm?s” (see Figure 3). We can see that in the case of a small sample (6
directions) the MAD estimator provides a significantly better assessment than WLS and RESTORE. For 12
and 30 gradient directions with a small number of outliers (less than 3 or 5), both the RESTORE and LTS
estimators enable a very good evaluation of the eigenstates. In contrast, WLS provides very poor
estimations in all cases.

Conclusion

The robust LTS and MAD estimators provide a better estimation in the case of small samples than WLS or

RESTORE. In general, an application of robust estimators can be recommended in order to improve the

evaluation of diffusion tensors, especially in the case of large physiological noise.
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