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Introduction 
Diffusion tensor imaging (DTI) is a very powerful technique with a great clinical and research potential. DTI allows one to perform a non-

invasive, in vivo tissue characterisation of human brain pathologies in relatively short acquisition times. The rotational invariants of DTI such as 

an apparent diffusion coefficient, fractional anisotropy, etc., have 

established themselves as valuable biomarkers in various brain 

disorders. The estimation methods play a key role in tensor 

assessment and, in turn, in the consistency of potential diagnostic 

outcome. In clinical measurements, DTI data sets are typically 

acquired with only a very few repetitions and might be strongly 

corrupted by artefacts. The robust statistics allow us to localize 

and erase the outliers caused by physiological noise [1,2]. 

However, the robust estimators in small samples present a rather 

complicated problem [3-5]. In this work, we compare the 

efficiency of different algorithms for small DTI samples that are 

especially sensitive to various artefacts such as cardiac pulsation, bulk head motion, etc. 

Theory and Methods 

We applied three methods of diffusion tensor estimation: weighted least squares (WLS) [6], RESTORE 

based on the M-estimator [1], and the algorithm developed by us and based on the least trimmed squares 

(LTS) [2] and median absolute deviation (MAD) estimators. The 

LTS algorithm exploits the trimmed squares of the arranged 

residuals:  where ri are the arranged residuals 

r1<r2<...rN, N is the number of applied gradient directions, and h is a truncation factor [2]. In order to 

improve the estimation in the case of small samples, we used an objective function based on the MAD 

estimator . We used simulations of the diffusion tensor with 

eigenvalues [1.5; 1.5; 3.0]x10-3 mm2s-1 for 6, 12 and 30 diffusion encoding gradients. In each case we 

artificially corrupted the signal attenuation by the Rician noise (SNR = 10) and a series of outliers.   

Results and Discussion 

In order to provide a statistical comparison, we simulated 100 diffusion tensors for each data set (see, for 

example, Figure 1). Using the above three algorithms we evaluated angular deviations of the estimated 

main eigenvector from the original direction (see Figure 2) and of the estimated mean diffusivity (MD) 

from the original value, 2x10-3 mm2s-1 (see Figure 3). We can see that in the case of a small sample (6 

directions) the MAD estimator provides a significantly better assessment than WLS and RESTORE. For 12 

and 30 gradient directions with a small number of outliers (less than 3 or 5), both the RESTORE and LTS 

estimators enable a very good evaluation of the eigenstates. In contrast, WLS provides very poor 

estimations in all cases. 

Conclusion 

The robust LTS and MAD estimators provide a better estimation in the case of small samples than WLS or 

RESTORE. In general, an application of robust estimators can be recommended in order to improve the 

evaluation of diffusion tensors, especially in the case of large physiological noise. 
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    Figure 2.  Angular deviation of the 
estimated main eigenvector from the 
original direction as a function of the 
number of outliers.  

 Figure 3. The deviation of the 
estimated MD from the original value 
equal to 2x10-3 mm2s-1 as a function of 
the number of outliers. 

 
Figure 1. Diffusion tensors in ellipsoidal 
form where the eigenvalues are equal to 
the length of the main axes and the 
eigenvectors are the directions. 
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