

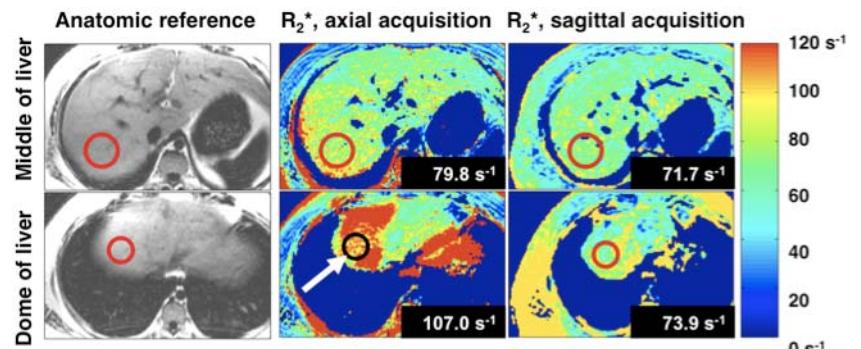
Spatially-variant B_0 field gradients in the liver: implications for R_2^* mapping for iron quantification

Debra E. Horng^{1,2}, Diego Hernando¹, Jens-Peter Kühn^{1,3}, and Scott B. Reeder^{1,2}

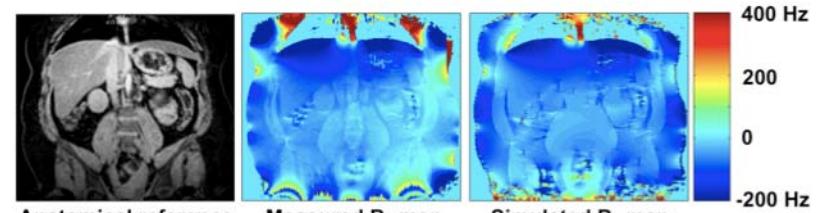
¹Radiology, University of Wisconsin-Madison, Madison, WI, United States, ²Medical Physics, University of Wisconsin-Madison, Madison, WI, United States,

³Radiology and Neuroradiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany

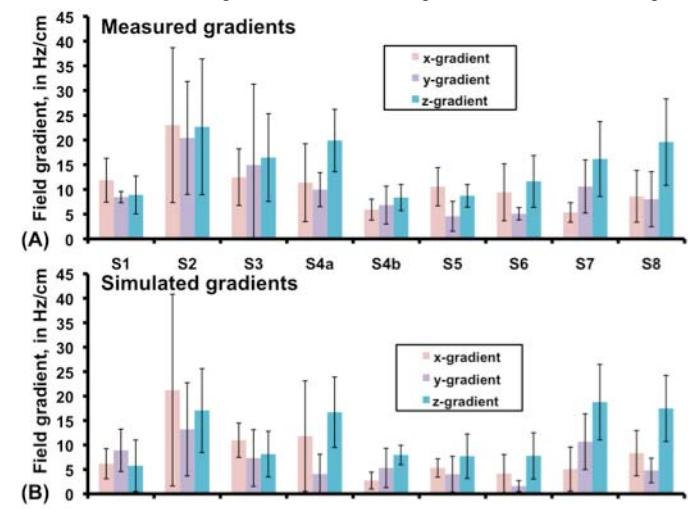
Introduction: R_2^* relaxometry is a promising technique for liver iron quantification¹. However, measured R_2^* values are affected by several confounding factors, including the presence of macroscopic B_0 field inhomogeneities due to susceptibility effects, e.g., near the dome of the liver (Fig. 1). Susceptibility effects introduce errors in the apparent R_2^* , and these errors can be highly protocol-dependent. The purpose of this work is to characterize the B_0 distribution in the liver in order to optimize acquisition strategies.


Methods: After IRB approval, 6 patients with no known iron overload underwent chemical shift-based MR imaging of the liver acquired at 3T using an investigational multi-echo 3D spoiled gradient echo, with two protocols with different image parameters. **Protocol 1:** sagittal slab, TR=9.0 ms, 6 echoes/TR (1 shot), TE₁=0.8 ms, ΔTE=1.2 ms, with slice thickness = 3.0 mm. **Protocol 2:** axial slab, TR=8.0 ms, 3 echoes/TR (2 shots), TE₁=1.2 ms, ΔTE=1.0 ms, with slice thickness = 8.0 mm. Separated water and fat images, an R_2^* map, and a B_0 field map were obtained using a chemical shift-based water-fat separation algorithm². The spatial gradient of the B_0 field map (in \hat{x} , \hat{y} , \hat{z}) was computed from the sagittal data. ROIs were placed in the 9 Couinaud segments of the liver by a radiologist with >5 years experience in liver imaging, in order to measure the 3 components of the gradient. Theoretical B_0 field maps were calculated³ for each subject based on known susceptibility values of water/fat/air⁴, and an anatomically specific susceptibility distribution (derived from the fat-water separation described above), in order to characterize the source of B_0 field inhomogeneities. Finally, theoretical B_0 gradients were obtained from the calculated B_0 field for each segment in each subject, and compared with the measured B_0 field gradients.

Results: Segment 2 has the highest gradients with an average of 22.0 Hz/cm for the measured gradients, and also the highest standard deviation at an average of ± 13.6 Hz/cm (Fig. 3). Segments 4A, 7, and 8 also have large gradients in the \hat{z} direction (all above 15 Hz/cm). The measured and simulated average gradients have correlations of 0.79 for \hat{x} , 0.91 for \hat{y} , and 0.83 for \hat{z} , demonstrating good agreement. In contrast to the agreement between theoretical and measured average gradients in Fig. 3, Fig. 4 demonstrates that the simulated gradients do not predict the measured gradients well for an individual segment of a particular liver.


Discussion and Conclusion: The difference in the behavior between the average gradients in Fig. 3 and the individual gradients in Fig. 4 may be explained by the relative simplicity of the susceptibility model used in the simulation. Rapid field variations along \hat{z} near the liver dome (segments 4A, 7, 8) result in an increase in the apparent R_2^* , as often observed in scans acquired axially with thick slices. **Thus, sagittal or coronal acquisitions, rather than axial, may be preferable if localized R_2^* measures near the liver dome are required.** The methods presented in this work may be used to optimize acquisition parameters to minimize the field variation within a voxel to avoid susceptibility-related errors in R_2^* measurement for liver iron quantification.

References: 1. Wood J et al. Blood. 106(4):1460-5. 2. Yu H et al. MRM. 26(4):1153-61. 3. Koch KM et al. Phys Med Biol. 51(24):6381-402. 4. Collins CM et al. MRI. 20(5):413-24.


Acknowledgements: We gratefully acknowledge support from the NIH (R01 DK083380, R01 DK088925, and RC1 EB010384), WARP Accelerator Program, the Coulter Foundation, and GE Healthcare.

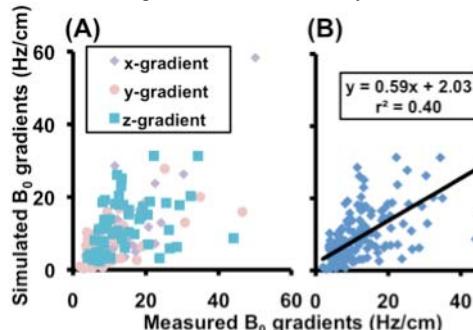

Figure 1. Apparent R_2^* values are protocol-dependent. Axial acquisition at the dome (white arrow) shows increased R_2^* (107.0 s^{-1} , $\sigma=12.4\text{ s}^{-1}$) relative to sagittal at the dome (73.9 s^{-1} , $\sigma=15.5\text{ s}^{-1}$). R_2^* in the sagittal acquisition at the dome is closer to both the axial at the middle (79.8 s^{-1} , $\sigma=12.4\text{ s}^{-1}$) and the sagittal acquisition at the middle (71.7 s^{-1} , $\sigma=10.4\text{ s}^{-1}$).

Figure 2. Coronal views of a water image, the measured B_0 map, and the simulated B_0 map.

Figure 3. On average, the behavior of the measured and simulated B_0 gradients appears very similar. Gradients are measured (a) and simulated (b) for each segment of the liver, for \hat{x} , \hat{y} , and \hat{z} .

Figure 4. Individual simulated gradients have limited ability to predict individual gradients. The simulated gradients are plotted against measured gradients in \hat{x} , \hat{y} , and \hat{z} (a), and the magnitudes are plotted in (b).