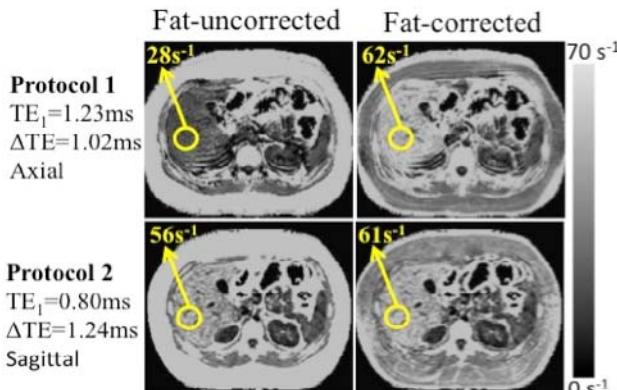


Correction for fat improves robustness of $R2^*$ mapping without SNR penalty


Diego Hernando¹, and Scott B Reeder^{1,2}

¹Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States, ²Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Introduction: $R2^*$ mapping using multi-echo gradient-echo sequences has multiple applications in MRI, such as the assessment of tissue iron overload. However, measurement of $R2^*$ is complicated by several confounding factors, including the presence of fat [1]. Fat introduces additional modulations in the acquired signal and results in large errors in $R2^*$ quantification if not corrected. This is particularly relevant in organs that often contain fat (e.g., liver, pancreas). The presence of fat can be partially addressed by using in-phase echoes, where the water and main methylene signals are in-phase or the echo spacing is one full cycle (~ 4.6 ms at 1.5T), or by suppressing the fat signal using chemical shift-based or T1-based (inversion-recovery) techniques. Alternatively, the presence of fat can be addressed by including fat-water separation in the $R2^*$ estimation (i.e., by acquiring chemical shift-encoded data without fat suppression, and performing fat-water separation and $R2^*$ measurement by postprocessing). This approach introduces fewer constraints in the acquisition parameters (eg. more favorable echo times), allows for modeling of the multi-peak fat signal, and provides water-only and fat-only images, which also have diagnostic value. However, it is unknown whether including the additional parameter (fat signal amplitude) in the $R2^*$ measurement compromises the SNR performance of $R2^*$ mapping due to the need to estimate more unknown variables from the same data. In this work, we evaluate the properties (robustness and noise) of fat-water corrected $R2^*$ mapping.

Methods: In order to demonstrate the need for fat correction in liver $R2^*$ mapping, chemical shift-encoded imaging 3.0T data (acquired in accordance with the local Institutional Review Board) from a subject with high liver fat (30% fat fraction) was retrospectively reconstructed, using both fat-uncorrected (single exponential model) and fat-corrected (using a multi-peak fat model with a common $R2^*$ for the water and fat components) $R2^*$ mapping methods. Data were acquired using a single breath-hold 3D multi-echo SPGR sequence with 6 echoes and two different protocols (see Figure 1). To characterize the SNR performance of $R2^*$ measurement (both fat-uncorrected and fat-corrected), the Cramer-Rao bound (CRB, the theoretical lower bound on the variance of any unbiased estimator) [2] for $R2^*$ measurement was calculated for typical echo times at 1.5T (6 echoes, $TE_1=1.2$ ms, $\Delta TE=2.0$ ms) and increasing values of $R2^*$ between 0 and 700 s^{-1} . Additionally, an iron phantom was constructed according to Ref. [3], using SPIO (Feridex, Bayer Inc., Wayne, NJ) concentrations of 0, 25, 50, 75 and 100 mg/l. The phantom was scanned at 1.5T using a 3D multi-echo SPGR sequence with 6 echoes ($TE_1=1.3$ ms, $\Delta TE=2.1$ ms). The phantom acquisition was repeated 16 times in order to measure noise behavior on a pixel-by-pixel basis, and $R2^*$ maps were calculated for each acquisition using both fat-uncorrected and fat-corrected methods.

Results: Figure 1 shows liver $R2^*$ results. Fat-uncorrected $R2^*$ measurements are protocol-dependent, whereas fat-corrected measurements provide very similar measures with different protocols, i.e., are more robust. Phantom $R2^*$ measurements (Figure 2, top) for the 6 vials were: (fat-uncorrected) 11.0 ± 1.5 , 146.1 ± 3.8 , 285.9 ± 8.3 , 430.4 ± 18.0 , $588.1\pm 36.5\text{ s}^{-1}$, (fat-corrected) 10.8 ± 1.6 , 146.2 ± 3.8 , 287.0 ± 8.4 , 433.4 ± 17.9 , 586.6 ± 37.1 . Figure 2 (bottom) plots the measured phantom and theoretical (CRB) standard deviations for fat-uncorrected and fat-corrected $R2^*$ mapping. There is effectively no SNR penalty for including fat in the measurement, for $R2^*<600\text{ s}^{-1}$. This is analogous to the ability to obtain effective number of signal averages N when performing fat-water separation from N (properly chosen) echo times [4]. For higher $R2^*$ values, there is a small increase in standard deviation for fat-corrected $R2^*$ (e.g., for $R2^*=1000\text{ s}^{-1}$, fat-corrected measurements would result in 25% higher standard deviation).

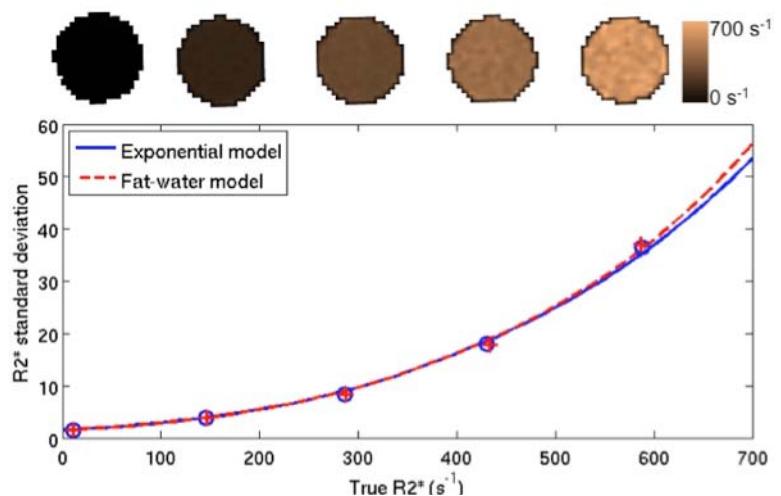


Figure 1. Correcting for the presence of fat is necessary for robust liver $R2^*$ mapping, as liver fat is very common (e.g., 33% of US population) and the presence of fat introduces additional modulations in the MR signal. The figure shows $R2^*$ measurements from two different protocols in a subject with high liver fat (30% fat fraction). Fat-uncorrected $R2^*$ measurements are heavily dependent on the echo time combination. Fat-corrected $R2^*$ provides similar measurements using different acquisition parameters.

Conclusion: Fat-water corrected $R2^*$ mapping improves robustness of $R2^*$ estimates without SNR penalty over a wide range of $R2^*$ values and acquisition parameters. This is particularly necessary for liver $R2^*$ mapping, where fat may be present in up to 30% of patients (ref), and has important implications for liver iron measurement using $R2^*$ -MRI.

References: [1] Reeder SB et al, MRICNA 2010. [2] Scharf LL et al, Signal Proc 1993. [3] Hines CDG et al, ISMRM 2009, p2707. [4] Pineda AR, et al, MRM 2005.

Acknowledgements: We acknowledge support from the NIH (R01 DK083380, R01 DK088925 and RC1 EB010384), the Coulter Foundation, WARF Accelerator Program and GE Healthcare.

Figure 2. Including the presence of fat in $R2^*$ measurements does not result an SNR penalty over a large range of acquisition parameters and $R2^*$ values. (Top) Phantom $R2^*$ maps (fat-corrected) show increasing $R2^*$ with increasing iron concentration. (Bottom) Theoretical (CRB) and experimental (phantom) standard deviation in $R2^*$ measurements for increasing $R2^*$ (fat-uncorrected: \bullet , fat-corrected: $+$) show good agreement.