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Introduction: Mapping of the longitudinal relaxation time (T;) in the human brain is of great interest for both clinical research and MRI sequence development (1). For
interpretation of T, data, it is often necessary to know the uncertainty of this quantitative parameter; without it, it is difficult to draw any conclusions about the measured
variations. We combine a slice shifted multi-slice inversion recovery EPI technique (2), with a wild bootstrapping statistical method (3), leading to a procedure to determine
the T, and its uncertainty in one short (4m10s) measurement. It is shown that the variation in T; over anatomic regions is larger than the uncertainty in the measurement,
indicating heterogeneity of the inspected tissue. This approach to estimate the T, and its uncertainty without the need for repeated measurements may prove to be useful for
calculating effect sizes that need to be taken into account when comparing group
differences.

Methods: Nine healthy volunteers (mean age = 52.5 yr, range 34-64 yr) were scanned on a
7 T Philips Achieva MRI system. We applied a multi slice inversion recovery echo planar
imaging (MS-IR-EPI) method, based on the method published by Ordidge et al (2). This
method employs an adiabatic global inversion pulse followed by sequential single shot
EPI readouts. By applying slice cycling the effective inversion time is varied. The
acquired volume consisted of 46 single shot EPI slices. With a slice-shift of 2 slices and
23 repetitions, all slices were sampled at 23 different time points after inversion. The
residuals obtained after T, fitting allow for estimation of the T, uncertainty by use of the
wild bootstrap method.

The single-shot EPI sequence FOV: 224x224x91.5 mm (RL, AP, FH), voxel size
1.0x1.0x1.5 mm’, slice gap: 0.5 mm. Inversion was achieved by a non-selective adiabatic
inversion pulse. After the global inversion, all slices in the volume are acquired
successively using slice-selective 90° excitations and EPI read-outs. During the second
repetition the slice ordering is shifted, so all slices are acquired at a different inversion
time. The total scan duration was 4 minutes and 10 seconds.

Acquired slices were re-ordered along the time direction, so that each of the 23 volumes
corresponded to a specific time after inversion. After polarity restoration of the magnitude
inversion curve, quantitative T; (qT,) maps were calculated by fitting each voxel to:
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T, values for frontal and posterior and corpus callosum white matter are 1061 £118 ms

(11.1%), 1103 +110 ms (9.9%) and 1096 +148 ms (13.5%) respectively, the corresponding uncertainties are 3.3%, 2.6% and 3.9%. Mean uncertainty values for the different
ROIs vary between 1.9% for CSF and 3.9% for WM in the corpus callosum.

Discussion and Conclusions: The results show that this method allows for the determination of T, values within an uncertainty of 2-4%. The standard deviations of T; over the
selected ROIs vary more than this; 9-20%. This indicates that tissue heterogeneity dominates the variance in the ROIs, rather than the measurement error. In general the
image quality of this method is high. Although a single shot EPI readout method is applied, the distortions towards the anterior-inferior regions are relatively benign. The
calculated qT; maps are very homogeneous, showing little or no effect of the coil transmit and receive sensitivities that are present in many other modalities at 7 T. In
contrast, the fitted values for the proton density (/) do show these sensitivities very clearly.

The primary function of the uncertainty maps is to identify those areas where the data is not very well fitted to the model, i.e. a single T; component per voxel. Examples of
this are found at boundaries between different types of tissue, most prominently at the ventricular wall, where partial volume effects with CSF cause the largest increase in
uncertainty, see Figure 3d, e and g. This is similar to the map of residuals or sum of squares errors, which also reflects the success of the fit. However, this wild bootstrap
method also allows for estimation of the uncertainty of each fitted parameter quantitatively. For example, if we consider the thalamic region, we know that it has an average
T, of 1336 ms with an average standard deviation over this ROI of 129 ms (or 9.7%), while the mean uncertainty of the fitted T, values for this ROl is only 3.1%. Only part
of this variation can be explained by uncertainty of the fit procedure and the SNR of the data. We are now able to say that thalamus tissue is rather heterogeneous in its T,
value. Furthermore, when comparing groups in clinical research, differences in mean values that are smaller than the calculated uncertainty should be treated with care.

To conclude, we have shown the successful application of a multipoint multi-slice method for fast T, mapping with full brain coverage at high resolution. The method allows
for quantitative assessment of the uncertainties of the fitted parameters, on a voxel-by voxel basis, by use of a wild bootstrap method. This approach facilitates the
investigation of heterogeneity in T, values separately from the estimated variance of the method. By knowing the expected uncertainty in T in a specific region of the brain,
it is possible to interpret effect sizes in those regions. We believe that our proposed methodology contributes in making T; mapping a more reliable quantitative method.
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