

SNR Requirements for T1 and T2 Estimation using bSSFP

R. Reeve Ingle¹, Joëlle K. Barral², Marcus Björk³, Erik Gudmundson^{4,5}, Petre Stoica⁴, and Dwight G Nishimura¹

¹Electrical Engineering, Stanford University, Stanford, California, United States, ²Heart Vista, Inc., Los Altos, California, United States, ³Department of Information Technology, Systems and Control, Uppsala University, Uppsala, Sweden, ⁴Centre for Mathematical Sciences, Lund University, Lund, Sweden, ⁵Signal Processing Lab, ACCESS Linnaeus Center, KTH – Royal Institute of Technology, Sweden

Introduction Recent parameter estimation techniques based on the Freeman-Hill formula [1] for balanced steady-state free precession (bSSFP) have been proposed to remove banding artifacts and estimate off-resonance maps from multiple phase-cycled bSSFP images [2-3]. An intriguing extension of these algorithms is the simultaneous estimation of T₁, T₂, resonant frequency, and frequency-independent (i.e., banding-free) signal from a set of phase-cycled bSSFP images. Due to the high SNR efficiency of bSSFP, this approach could be very beneficial for rapid parameter estimation, provided that accurate estimation is possible using a moderate number of phase-cycled images. In this work, we present the negative result that the conditioning of the signal equation is such that accurate estimation of T₁ and T₂ using a moderate number of phase-cycled bSSFP images requires prohibitively high SNR. We derive theoretical limits for the minimum variance of T₁ and T₂ estimates using the Cramér-Rao Bound (CRB), and, using these limits, we present the SNR requirements to achieve 5% precision using four phase-cycled bSSFP images.

Theory The Freeman-Hill formula is given in Eq. 1, where α is the flip angle, $\theta=2\pi\text{TRf}$, with f the resonant frequency, $\theta_n=\theta+\Delta\theta_n$, with $\Delta\theta_n$ the radio-frequency phase increment, M₀ is the equilibrium magnetization, and K is the coil sensitivity. The CRB gives an expression for the minimum variance of an unbiased parameter estimate. For parameters T₁, T₂, θ , and KM₀, the CRB was derived using the Slepian-Bangs formula [4]. The SNRs required to obtain 5% precision of the estimates of T₁ and T₂, respectively, were then calculated, with precision being defined as the standard deviation relative to the true parameter value. SNR was defined as

$$\text{SNR} = 1/\sigma \sqrt{1/N \sum_n |S_n|^2},$$

where σ^2 is the noise variance of each bSSFP acquisition.

Methods Numerical simulations were performed using Matlab and the following parameters: TE = 5ms, TR = 10ms, $\alpha = 30^\circ$, $\theta = 0^\circ$, KM₀ = 1, $\Delta\theta_n = [0, \pi/2, \pi, 3\pi/2]$, T₁ = 100-3000ms (1000 values), T₂ = 5-200ms (200 values).

Results Figures 1 and 2 show the theoretical bound for the minimum SNR required to obtain a standard deviation of the estimates of T₁ and T₂ that is at most 5% of its true value. The bounds are computed using the CRB and therefore hold for any unbiased estimator. To estimate the relaxation parameters of white matter and gray matter in the brain at 1.5 T, we see that an SNR of roughly 100 (40 dB) is needed. This SNR is above what is typically obtained in a bSSFP scan. While Figs. 1-2 assumed a constant θ , Fig. 3 plots the CRB of T₁, T₂, θ , and KM₀ over a range of θ values from 0 to 360°, using an average SNR of 32 (30 dB). The true parameter values were selected to represent white matter at 1.5 T: T₁ = 675ms, T₂ = 75ms, and KM₀ = 1. The precisions of θ and KM₀ are approximately 5% of the true parameter values, while the precisions of T₁ and T₂ are approximately 13% and 12% of the true parameter values, respectively.

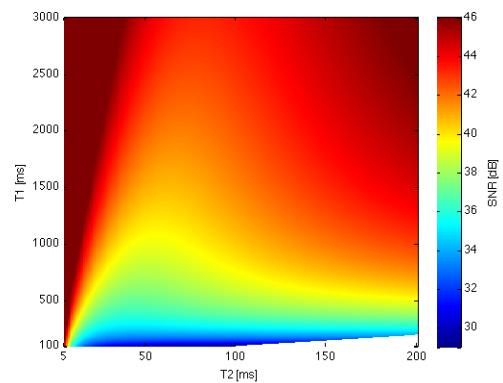
Discussion and Conclusion The CRB analysis has shown that, from a theoretical standpoint, T₁ and T₂ are much more difficult to estimate than θ or KM₀. In practice, additional factors such as magnetization transfer effects and motion will contribute additional complications for in vivo studies. However, even neglecting these factors, the SNR required to precisely estimate T₁ and T₂ from a set of four phase-cycled bSSFP images is higher than what is typically obtained in vivo. The SNR requirements for 5% precision can be reduced by acquiring a larger number of phase-cycled bSSFP images, but this comes at the expense of longer scan times. For example, using 32 phase-cycled bSSFP images reduces the SNR requirement for white matter T₁ and T₂ estimation to 29 dB ($|S_n|/\sigma = 28$). We therefore conclude that, in general, phase-cycled bSSFP is not a reliable method to estimate T₁ and T₂ in vivo on a clinical system.

References

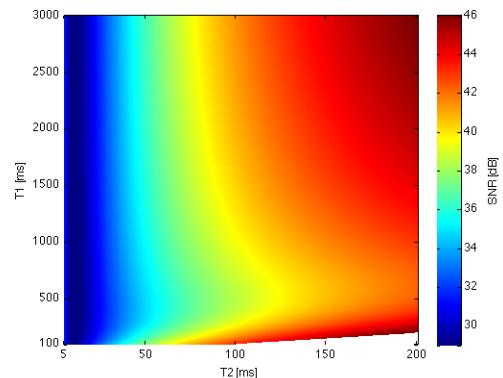
- [1] Freeman, *et al.* JMR 4:366-383, 1971. [2] Björk, *et al.* Proc 19th EUSIPCO 1000-1004, 2011.
 [3] Santini, *et al.* Proc. 18th ISMRM 3089, 2010. [4] Stoica, *et al.* Spectral Analysis of Signals, 2005.

$$S_n = KM_0 ce^{i\theta \text{TE/TR}} \frac{1 - ae^{-i\theta n}}{1 - b \cos(\theta_n)}$$

$$a = E_2$$


$$b = E_2 \frac{1 - E_1 \cos \alpha - E_1 + \cos \alpha}{1 - E_1 \cos \alpha - (E_1 - \cos \alpha) E_2^2}$$

$$c = ie^{-\text{TE}/T_2} \frac{(1 - E_1) \sin \alpha}{1 - E_1 \cos \alpha - (E_1 - \cos \alpha) E_2^2}$$


$$E_1 = e^{-\text{TR}/T_1}$$

$$E_2 = e^{-\text{TR}/T_2}$$

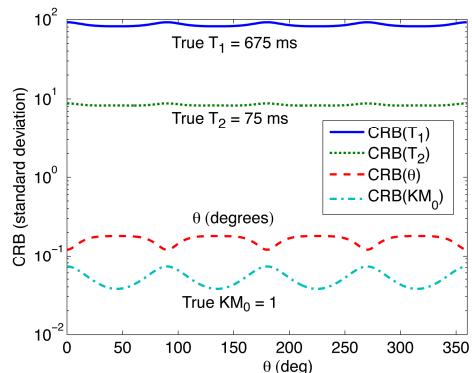

Equation 1. Freeman-Hill Formula

Figure 1. SNR required to obtain 5% precision on T₁ estimation using 4 phase-cycled SSFP images.

Figure 2. SNR required to obtain 5% precision on T₂ estimation using 4 phase-cycled SSFP images.

Figure 3. CRB of T₁, T₂, θ , and KM₀ for an average SNR of 32 (30 dB).