
   

Figure1. A 44×44 MRI 
wrapped-phase image (Left), and 
its residue distribution (Right).
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Introduction: The phase of the MRI signal can provide important information about the magnetic field inhomogeneities, magnetic susceptibility variations, velocity of 
flowing spins and so on. However, when extracting the phase ψ(x,y) from a measured complex MRI image I(x,y)=|I(x,y)|exp(ψ(x,y)), through some mathematical 
operation, the result is typically wrapped into the principal interval of (– π, π], producing the wrapped phase φ(x,y). The process of estimating the true phase from the 
wrapped phase is called phase unwrapping. Because of the presence of the noise, undersampling and/or object discontinuities, phase unwrapping becomes difficult. One 
class of phase unwrapping algorithm is called branch-cut phase unwrapping. It detects residues, connects the residues of opposite polarity by branch cuts and then 
unwraps the phase to avoid those branch cuts. This approach tries to minimize the total length of the branch cuts; hence, it will decrease the amount of good pixels in 
the branch cuts and obtain a smoother result. We propose a new discrete Particle Swarm Optimization (dPSO)-based[1] branch-cut phase-unwrapping algorithm. Two 
novel features of the proposed dPSO method are, the grouping of all of the residues by dividing the phase image into some sub-regions, and in each region using the 
dPSO to match the two opposite polarity residues in pairs for the purpose of minimizing the overall length of the cuts and the area of the isolated patches.  
Methods: Residues division. We divide the whole phase image into sub-regions according to its phase derivative variance 
map, defined by the equation: 2 2 2
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Because most of the residues distribute in the regions of high phase derivative variance values, based on a suitable threshold, 
we convert the phase derivative variance map to a binary map and the residues almost scatter in the pixels of value 1. Then, 
these pixels are inflated to shape the separate areas. In this way, the residues are grouped.  
The dPSO algorithm. Initially, the indexes of the residues in each region are inserted in two arrays, positive residue and 
negative residue arrays. The positive array will be fixed throughout all iterations and acts as a reference. However, the 
negative array will be used as a particle. That is, searching the best match order of the negative residues is the target. If there 
are N negative residues in the current region, the ith particle of swam is represented as Ui={ui1, ui2,..., uiN}, where each 
element is an index of a negative residue. The local best position, the ith particle has reached, is recorded as 
Pi={pi1,pi2,…,piN}. The global best position is Pg={pg1,pg2,…,pgN}. The velocity of the ith particle is represented as 
Vi={vi1,vi2,…,viN}. In each iteration, every particle changes its velocity and position by the following formulas: 
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represents the iteration number, c1 and c2 are non-negative constants, called learning factors, determining the influence of Pi 
and Pg, the function rand() and Rand() generate a random number between 0 and 1, w is the inertia weight. Considering the 
capacity of searching the global optimal solution and convergence rate, we define w to linearly decrease during all the 
iterations: 0.9 0.5 ( / )w t T= − × (Eq.(4)), where T is the total iteration times. Then, we define a permutation operator 
PO(a1,a2) for swapping the a1th and a2th indexes in a particle. The plus sign ‘+’ between a particle and a permutation 
operator means acting the operator on the particle, while ‘+’ between permutation operators or permutation operator arrays 
means putting the latter behind the former. The order of the operators in the array is important. Thus, the operators cannot 
be interchanged and must be implemented in turn. The minus sign ‘-’ means constructing an array of one or more 
permutation operators that can apply to the item behind the sign to get the one ahead. Therefore, the velocity Vi is an array 
of permutation operators. In addition, the multiplication sign ‘*’ between a real number and the permutation operator array 
means reserving a part of the array when the real number is in the range (0,1). The fitness function is shown 
as: 2 2F itness ( ) ( )
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Branch cuts and unwrapping. Once the best match in every region is found by the dPSO, the branch cuts are placed to connect each pair. The nearest neighbor 
algorithm [2] is employed to place branch cuts among any residues left. Then the phase can be unwrapped by the flood-fill algorithm [3]. 
Results: A MRI dataset [4] was used to verify the performance of the proposed algorithm. The results were compared with Goldstein’s algorithm [3]. The MRI 
wrapped-phase image and its corresponding residue distribution are shown in Figure1. The corresponding branch-cut distribution and unwrapped-phase image by using 
Goldstein’s method are shown in Figure 2 (Upper). It is easy to 
determine that there are two large patches isolated in the upper 
part of the unwrapped image, two small ones in the middle and 
a very large one in the lower right part. The dPSO results shown 
in Figure 2 (Lower) are achieved by using 0.9612 as the 
threshold, a swarm of 300 particles, c1=2, c2=2 and T=1000. 
The comparison is shown in Table 1. 
Conclusion: A new dPSO-based branch-cut phase unwrapping algorithm has been proposed. This algorithm has been demonstrated to be robust and effective. The 
result of the dPSO was compared to Goldstein’s algorithm. It is deduced that the dPSO is a better algorithm in terms of the total branch cuts length, unweighted L0 
measure and the area of the isolated patches. It is important to point out that the complexity of the dPSO algorithm increases with the increase in the number of residues. 
This is attributable to the increase in the length of the particle, which will require a larger swarm size. Future modifications of this algorithm will enable it to be faster 
and set the appropriate threshold by itself.  
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Table 1. Comparison of dPSO with Goldstein’s algorithms by total cuts length, unweighted L0 
measure and area of the isolated patches.  

Algorithm Total Cuts Length Unweighted L0 Measure Area of the Isolated Patches 
dPSO 309 0.2283 41 
Goldstein’s 454 0.3755 382 

    

    
Figure 2. The branch-cut distribution 
(Left) and unwrapped-phase image 
(Right), achieved by using the 
Goldstein’s algorithm (Upper) and 
the dPSO algorithm (Lower). 
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