Precision and accuracy of R₂ and R₂* estimation with spin- and gradient-echo EPI

Heiko Schmiedeskamp¹, Matus Straka¹, Thomas Christen¹, Greg Zaharchuk¹, and Roland Bammer¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States

INTRODUCTION - Combined spin-echo (SE) and gradient-echo (GE) EPI acquisitions are beneficial for quantitative PWI and facilitate the separation of microvascular and large vessel signals [1], which found application in tumor imaging [2]. With such a pulse sequence, R₂ and R₂* mapping with a temporal resolution of less than 2 seconds is possible, and it can be used for vessel-size imaging (VSI) [3] and the determination of tissue oxygen extraction fraction [4]. High accuracy in the estimation of R2 and R2* is important for the proper determination of these parameters. For DSC-PWI and dynamic approaches in VSI, it is crucial to obtain R₂ and R₂* estimates with high temporal stability (precision).

To determine simultaneous estimates of R2 and R2*, a spinand gradient-echo (SAGE) EPI pulse sequence has recently been introduced [5]. SAGE EPI data can be processed based on Eq. 1, to obtain T₁-independent estimates of R₂ and R₂*

$$S^{I}(t) = S_{0}^{I} \cdot e^{-t \cdot R_{2}^{s}} \qquad 0 < t < TE/2$$

$$S^{II}(t) = S_{0}^{II} \cdot e^{-TE \cdot (R_{2}^{s} - R_{2})} \cdot e^{-t \cdot (2 \cdot R_{2} - R_{2}^{s})} = \frac{S_{0}^{I}}{\delta} \cdot e^{-TE \cdot (R_{2}^{s} - R_{2})} \cdot e^{-t \cdot (2 \cdot R_{2} - R_{2}^{s})} \quad TE/2 < t \le TE$$

[6]. With combined spin- and gradient-echo measurements, slice profile differences between excitation and refocusing pulse are challenging, leading to different signal magnitudes before (S_0^I) and after (S_0^{II}) the refocusing pulse. The objective of this study was to analyze the precision and accuracy of R₂ and R₂* estimates in dynamic studies without slice profile correction and with two different methods to correct for non-matching slice profiles.

THEORY – In Eq. 1, $S^{I}(t)$ and $S^{II}(t)$ denote the signals before and after the spin-echo refocusing pulse. With a correction term $\delta = S_0^{I}/S_0^{II}$ and joint estimation of R₂ & R₂* using Eq. 1, estimation errors of R₂ & R₂* are greatly reduced compared to an approach assuming matching slice profiles [6].

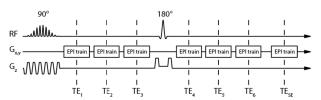


Fig. 1: SAGE EPI pulse sequence diagram.

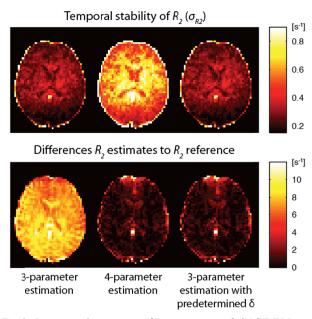


Fig. 2: Precision & accuracy of R₂ estimates with SAGE EPI.

METHODS - Image acquisition was performed at 1.5 T using the SAGE EPI pulse sequence shown in Fig.1. Measurements were acquired with a parallel imaging acceleration factor of R = 3, and they were repeated 69 times with TR = 1800 ms and $TE_{SAGE,1-7}$ = 12.0, 23.9, 35.9, 59.6, 71.6, 83.5, 100.0 ms. To determine the precision of R₂ and R₂* estimates, all 7 echo trains were used for parameter estimation. Specifically, three different methods were assessed:

- 3-parameter estimation (S_0, R_2, R_2^*) , assuming
- slice profiles, i.e. $S_0^I = S_0^{II}$; 4-parameter estimation $(S_0^I, S_0^{II}, R_2, R_2^*)$, assuming non-matching slice profiles, i.e. $S_0^I = \delta \cdot S_0^{II}$;
- 3-parameter estimation with predetermined δ ; here, δ was derived using 4-parameter estimation from the voxel-wise signal average during a pre-defined baseline period of 10 time points, equivalent to the pre-bolus period in a typical DSC-PWI experiment. Subsequently, for each time point, Eq. 1 was solved for 3 parameters.

For each processing method, voxel-wise standard deviations of R_2 (σ_{R2}) and R_2^* (σ_{R2^*}) were measured over all time points to assess the precision of R_2 and R₂* estimates, a metric for signal stability in DSC-PWI. In addition, the accuracy of R2 and R2* estimates was determined through comparisons with reference data obtained in 7 SE EPI measurements with varying $TE_{SE,1-7} = 35$ -95 ms and a 7-echo GE EPI acquisition with $TE_{GE,1-7} = 11.6-83.0$ ms.

RESULTS - Fig.2 shows the precision and accuracy of R₂ estimates in a human experiment. The precision of estimated R2 was considerably larger using 4parameter estimation (average $\sigma_{R2}=1.01~\text{s}^{-1}$), compared to 3-parameter estimation ignoring δ ($\sigma_{R2}=0.42~\text{s}^{-1}$). If δ was estimated based on 10 baseline scans and then used as a predetermined parameter in the 3-parameter estimation model, $\sigma_{R2} = 0.42 \text{ s}^{-1}$ resulted. Thus, the precision of R₂ estimates using method 3 was as good as with method 1. The precision of R_2^* was nearly identical with all three methods ($\sigma_{R2^*} = 1.32 \text{ s}^{-1}$, 1.27 s⁻¹, and 1.32 s⁻¹). Despite high precision in the estimation of R_2 and R_2^* , however, large overestimations of R_2 (+63.8%)

and R₂* (+78.1%) occurred if slice profile mismatches were ignored (method 1). R₂ and R₂* estimates in the other two approaches were more accurate: average R₂ (R₂*) was 1.0% (0.4%) larger than the reference value with method 2, and 0.3% larger (0.4% smaller) with method 3 (cf. Fig.2).

DISCUSSION – The analysis of precision of R₂ and R₂* showed that the 4-parameter estimation led to a considerable increase in temporal fluctuations of R₂ when compared to R₂ estimates determined from 3-parameter estimation methods. As shown here, the effective slice profile mismatch could be determined in a baseline measurement and thereafter applied to the MR signal equation (Eq. 1) as an approximated term. This method revealed precisions of R_2 and R_2 * estimates similar to those achieved without δ -correction, but with the advantage of better accuracy in the estimation of the transversal relaxation parameters. Thus, to achieve high precision and high accuracy, it is recommended to use 3-parameter estimation with a predetermined slice profile correction factor δ , particularly in presence of noisy datasets or large slice profile mismatches.

REFERENCES - [1] Boxerman, et al. MRM 1995;34:555-566, [2] Donahue, et al. MRM 2000;43:845-853, [3] Kiselev, et al. MRM 2005;53:553-563, [4] Christen, et al. Proc. ISMRM 2011, p.2729, [5] Newbould, et al. Proc. ISMRM 2007 p.1451, [6] Schmiedeskamp, et al. MRM 2011;doi:10.1002.

ACKNOWLEDGEMENTS - NIH (5R01EB002711, 5R01EB008706, 5R01EB006526, 5R21EB006860, 2P41RR009784), Lucas Foundation, Oak Foundation.