The Fastest Arbitrary k-space Trajectories
Sana Vaziri', and Michael Lustig'
!Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, United States

Introduction:

We present a method to compute the fastest possible gradient waveforms for a given k-space trajectory. In our design, we exploit the
fact that each gradient set has its own limitation. This is an extension of our previous method described in [1]. In that solution, the
worst-case magnitude gradient and slew constraints were considered. This has the advantage of resulting in waveforms that are
invariant to any rotation of the trajectory, at the expense of sub-utilizing the hardware. Here, we present an improvement of the
algorithm. We constraint the waveforms for each gradient set separately, while still requiring that the trajectory follows the desired k-
space path. This produces the fastest waveforms. A redesign is needed when the trajectory is rotated, as the solution depends on the
orientation of the curve. Our algorithm is fast and non-iterative and can compute waveforms on-the-fly.

Methods: The algorithm in [1] considers a gradient magnitude constraint of (zeJrGyz)”2 < Gpax and slew-rate constraint of (G’X2 +
G’yz) < Siax- It takes any given k-space trajectory, C(p), and converts it to the Euclidian arc-length parameterization, C(s). It then
determines a time function, s(t), with s(0) = 0 and s(T)=L, where T is the traversal time and L is the length of the curve. The slew and
gradient constraints are then described in this parameterization. The time optimal solution is equivalent to determining the optimal
velocity as a function of arc length. This solution is found by taking the minimum of a solution to an ordinary differential equation,
solved forward and backwards. This is described in details in [1].
Here we modify the constraints in [1] to be separate for each gradient set, €.g., |Gx| < Gmax> |Gyl< Gmax, |G’X[< Spax and |G’4|< Spax.
This results in the constraints and differential equation shown in Fig. 1.
The algorithm was implemented in the C programming language. Given: C(p) = {z(p),y(p), 2(p)}
Finite differences were used to approximate derivative operations.
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Integration was approximated using the trapezoid rule. Solutions afs) = mm{ 27 () > o’ (s)] * T2/ (s)] }
to the ordinary differential equations were approximated using the
4" order Runge-Kutta method [2]. All necessary curve B(s, $) = min { =" ()[5(t)*+YSmaz =1y ()]3(1)*+¥Smaz —\z”(s)|.§(t)2+‘~/5’mm}
interpolations were done using cubic-spline interpolation. o l"(#)] ’ Iy (@)l ’ 1"l

Forward ODE:
Results and Discussion: Fig. 2 shows examples of the fastest
gradient waveforms for circular and spiral trajectories. For the wv.(s) _ B 04(9), i vi(s) <als)
circular trajectory [3], the fastest design resulted in 9.6% decrease dale) otherwise
in the readout duration compared to the rotationally invariant
solution. For the spiral trajectory [4,5], we achieve a reduction of Backward ODE:
5.5%. In conclusion, we presented an improvement to the time- .
optimal gradient design that exploits the separate constraints for UQ(SS) - {Mﬁ(s?”(s))7
each gradient set. This improvement can be substantial in fast i
alcftq;lisitions, such as SSFP for reduction of scan time and banding Figure 1 Gradient constraints and resulting differential equations
artifacts.
References:
[1] Lustig et. al JIEEE-TMI
2008;6:866-73, [2] Boyce et. al,
Elementary differential equations 6™
edition, 1997. [3] Heid, ISMRM
2002; pp.2364 [4] King et. al, MRM
2004;51:81-92 [5] Meyer et. al,
ISMRM 1996 pp:306

if v_(s) < a(s)

otherwise

k-space

G/cm

R.Tnvar [g]
— R. Var. [g

o 05 1 15 2 25 3 35

1
=
R.Invar.|g] (O
——R. Var. [g| a4

cm-?!
E
Cl

L S S O S S

G/cm/ ms
)

Figure 2 (a,d) Circular and spiral 'f‘?Palce mag"itude;\;die"tands'ew
trajectories, (b,e) Gradient magnitude
and slew-rate of our design compared .
to the rotationally invariant design. ’W}
(cf) The resulting gradient waveforms.. { A O
are rectified, yet are smooth and &’
feasible to be played on a physical -
system. These achieve reduction of |
9.6% and 5.5% respectively.
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