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Introduction: 
We present a method to compute the fastest possible gradient waveforms for a given k-space trajectory. In our design, we exploit the 
fact that each gradient set has its own limitation. This is an extension of our previous method described in [1]. In that solution, the 
worst-case magnitude gradient and slew constraints were considered. This has the advantage of resulting in waveforms that are 
invariant to any rotation of the trajectory, at the expense of sub-utilizing the hardware. Here, we present an improvement of the 
algorithm. We constraint the waveforms for each gradient set separately, while still requiring that the trajectory follows the desired k-
space path. This produces the fastest waveforms. A redesign is needed when the trajectory is rotated, as the solution depends on the 
orientation of the curve. Our algorithm is fast and non-iterative and can compute waveforms on-the-fly.  
 
Methods:  The algorithm in [1] considers a gradient magnitude constraint of (Gx

2+Gy
2)1/2 < Gmax and slew-rate constraint of (G’x

2 + 
G’y

2) < Smax. It takes any given k-space trajectory, C(p), and converts it to the Euclidian arc-length parameterization, C(s).  It then 
determines a time function, s(t), with s(0) = 0 and s(T)=L, where T is the traversal time and L is the length of the curve. The slew and 
gradient constraints are then described in this parameterization. The time optimal solution is equivalent to determining the optimal 
velocity as a function of arc length. This solution is found by taking the minimum of a solution to an ordinary differential equation, 
solved forward and backwards. This is described in details in [1].  
 Here we modify the constraints in [1] to be separate for each gradient set, e.g., |Gx| < Gmax, |Gy|< Gmax, |G’x|< Smax and |G’x|< Smax. 
This results in the constraints and differential equation shown in Fig. 1.  
The algorithm was implemented in the C programming language. 
Finite differences were used to approximate derivative operations. 
Integration was approximated using the trapezoid rule. Solutions 
to the ordinary differential equations were approximated using the 
4th order Runge-Kutta method [2]. All necessary curve 
interpolations were done using cubic-spline interpolation.  
 
Results and Discussion: Fig. 2 shows examples of the fastest 
gradient waveforms for circular and spiral trajectories.  For the 
circular trajectory [3], the fastest design resulted in 9.6% decrease 
in the readout duration compared to the rotationally invariant 
solution. For the spiral trajectory [4,5], we achieve a reduction of 
5.5%. In conclusion, we presented an improvement to the time-
optimal gradient design that exploits the separate constraints for 
each gradient set. This improvement can be substantial in fast 
acquisitions, such as SSFP for reduction of scan time and banding 
artifacts. 
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Figure 1 Gradient constraints and resulting differential equations

Figure 2 (a,d) Circular and spiral
trajectories, (b,e) Gradient magnitude
and slew-rate of our design compared
to the rotationally invariant design.
(c,f) The resulting gradient waveforms
are rectified, yet are smooth and
feasible to be played on a physical
system. These achieve reduction of
9.6% and 5.5% respectively.   
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