3D Density-Adapted Projection Reconstruction ²³Na-MRI with Anisotropic Resolution and Field-of-View

Armin M. Nagel¹, Marc-André Weber², Maya B. Wolf^{2,3}, and Wolfhard Semmler¹

¹Dept. of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²University Hospital of Heidelberg, Heidelberg, Germany, ³Dept. of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Introduction

Three-dimensional radial imaging techniques are often used for short T_2^* imaging, such as sodium magnetic resonance imaging (23 Na-MRI) [1]. Usually, a spherical field-of-view (FOV) is sampled employing an isotropic spatial resolution. For some applications, such as, 23 Na-MRI of cartilage [2] or of skin [3], however, anisotropic spatial resolutions and FOVs prove to be more beneficial. Algorithms exist that allow for the design of anisotropic FOVs by non-uniformly sampling a set of cones or using a spiraling path on the surface of a sphere [4]. In this study, a 3-D density adapted projection reconstruction sequence sampling a cuboid (DA-3DPR-C) was implemented (Fig. 1). The manner by which the anisotropic spatial resolution and FOVs are obtained is analogous to rectangular Cartesian sampling.

Methods

²³Na-MRI was conducted on a 7-T whole body system (Magnetom 7-T, Siemens Healthcare, Erlangen, Germany) using a double-resonance (²³Na/ ¹H) quadrature birdcage coil (inner coil diameter: 26 cm; Rapid Biomed GmbH, Rimpar, Germany).

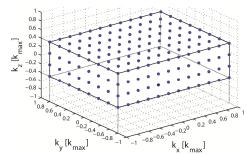
DA-3DPR trajectories, designed for spherical k-space sampling [5] were adequately scaled. The extremities of the trajectories were distributed on the surface of a cuboid (Fig. 1). The spacing between these extremities can be adjusted for the x-, y- and z- axes to adjust the FOV. The spatial resolution in each of these three dimensions can be altered by scaling the lengths of the cuboid's edges. The number of projections needed ($N_{\rm Nyq}$) to fulfill the Nyquist criteria is derived by equation 1. The FOVs in the different directions are indicated by the number of pixels.

 N_{Nyq} =2[(FOV_x-1)(FOV_y-1)+(FOV_x-1)(FOV_z-1)+(FOV_y-1)(FOV_z-1)+1] (equation 1) <u>Phantom-study:</u> The newly implemented DA-3DPR-C sequence was evaluated using a resolution phantom (Fig. 2a). Subsequently, a comparison with a DA-3DPR sequence using spherical k-space sampling (DA-3DPR-S) was performed. A spherical k-space volume yields a 1.31-fold broader Full Width at Half Maximum (FWHM) of the Point Spread Function (PSF) compared with a cubical k-space volume (1.59 pixels vs. 1.21 pixels). This signifies an increase in spatial resolution by a factor of a 1.31 when compared with spherical k-space sampling. Parameters: TE/ TR = 0.35/ 20 ms; α = 43°; readout duration T_{RO} = 10 ms. SNR was determined according to the National Electrical Manufacturers Association definition [6], using the magnitude signal of noise-only images. A normalization to the voxel size and to the square root of the measurement time was performed to ensure an adequate comparison.

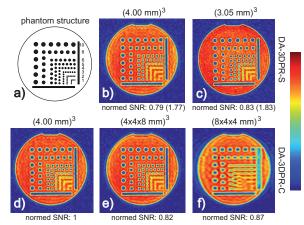
<u>In-vivo imaging:</u> To demonstrate the benefits of higher in-plane resolution, ²³Na images of the human calf muscles and knee were obtained. DA-3DPR-C sequences with an isotropic resolution of $(5.1 \text{ mm})^3$ and a high in-plane resolution of $(3.3 \text{ mm})^2$ were applied to the image of the calf muscles. FOVs of $(64)^3$ voxels and (82x82x34) voxels were used to arrive at the same number of projections (23816) and acquisition time (13 min 54 s) for both sequences (TE/ TR = 0.55/35 ms; $\alpha = 51^\circ$). To compare the performance of DA-3DPR-S and DA-3DPR-C sequences, 3-D data-sets of the human knee were acquired with isotropic resolution $(2.14 \text{ mm})^3$ and high in-plane resolution $(1.8x2.7 \text{ mm}^3)$ (slice thickness: 4.51 mm). Parameters: TE/ TR = 0.55/35 ms; $\alpha = 63^\circ$; acquisition time: 18 min 26 s.

Results

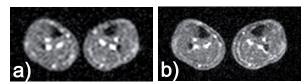
Considering the differences in the FWHM, the DA-3DPR-C sequence shows a slightly higher normalized SNR compared with the spherical k-space sampling (Fig. 2 b-d). The inplane resolution could be maintained by reducing the slice thickness and the FOV_z (Fig. 2d, e). By doing this, however, a slightly reduced normalized SNR was measured. Fig. 2f illustrates the effect of a one-dimensional resolution decrease. In elongated structures, such as, the human calf muscles, increasing the in-plane resolution at the expense of a lower slice resolution can considerably improve image quality (Fig. 3). For instance, the DA-3DPR-C sequences with isotropic resolution (Fig. 3a) and high in-plane resolution (Fig. 3b) exhibit similar SNR with the same acquisition time and similar voxel volume. Additionally, the DA-3DPR-C allows for a better resolution of knee cartilage than DA-3DPR-S imaging (Fig. 4).


Discussion and Conclusion

A density-adapted 3-D projection reconstruction sequence which samples a cuboid represents an intuitive and efficient approach for anisotropic resolution and FOV imaging.


References

- 1. Nielles-Vallespin et al. Magn Reson Med (2007); 57: p. 74
- 2. Trattnig et al. Radiology (2011); 257: p. 175
- 3. Linz et al. Proc Intl Soc Mag Reson Med 19 (2011): p. 3510
- 4. Larson P, et al. IEEE Trans Med Imaging (2008) 27: p. 475.
- 5. Nagel AM, et al. Magn Reson Med (2009) 62: p. 1565
- 6. National Electrical Manufacturers Association 2001.


Acknowledgement: Parts of this work were supported by the German Federal Ministry of Education and Research (project DOT-MOBI; 01IB08002).

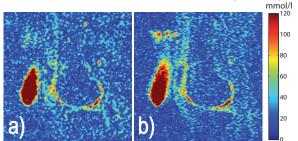

Fig. 1: Scheme used to distribute the radial projections. The trajectories start in the center of k-space and wind up on the surface of a cuboid. By distributing the extremities of the projections on the surface of the cuboid, the FOV and resolution can be adjusted in a manner resembling rectangular Cartesian sampling.

Fig. 2: Images of a resolution phantom (b-f). The sizes of the rods are given in millimeters (a). SNR was normalized to voxel size and the square root of the measurement time. For spherical k-space sampling, this value was scaled by a factor of $(1.31)^3$ to account for differences in the PSF. The original values are given in brackets.

Fig. 3: Zoomed DA-3DPR-C images of the human calf muscle. a) Isotropic spatial resolution $(5.1 \text{ mm})^3$ (SNR = 8.2). b) In-plane resolution of $3.3 \times 3.3 \text{ mm}^2$. Slice thickness: 12.7 mm. (SNR = 8.7)

Fig. 4: Zoomed sagital images of the human knee. a) DA-3DPR-S sequence. (2.14 mm)³. b) DA-3DPR-C sequence. In-plane resolution: 1.8x2.7 mm². Slice thickness: 12.7 mm.