
Ensemble Average Propagator Reconstruction via Compressed Sensing: Discrete or Continuous Bases ? 
Sylvain Louis Merlet1, Michael Paquette2, Rachid Deriche1, and Maxime Descoteaux2 

1Athena Project-Team, INRIA, Sophia Antipolis, Méditerranée, France, 2Computer Science Departement, Université de Sherbrooke, Québec, Canada 
 

INTRODUCTION: Sparsity is one of the key ingredient in Compressed Sensing (CS) recovery. The sparsity expresses the idea that a signal contains a small 

number of non-zero coefficients. Many transforms are known to make a signal sparse as the Discrete Wavelet Transform or the Discrete Cosine Transform 

respectively used in JPEG2000 and JPEG standards [2]. In Diffusion MRI (dMRI), few studies have been proposed to characterize the sparsity of the Ensemble 

Average Propagator (EAP) which captures the water diffusion phenomenon. In [1], the authors study the sparsity of five discrete EAP representations but their 

measures of sparsity depend on the reconstruction method used to estimate the EAP. [5] solves the CS-dMRI problem by applying a gradient as sparse transform. 

In [6], the authors take advantage of the natural EAP sparsity. In this work, we propose a fair comparison of two classes of representations : The discrete 

representations, via the Haar, Daubechie-Cohen-Fauveau (DCF) 5-3, DCF 9-7 wavelets bases [1, 2], and the continuous representations, via Spherical Polar 

Fourier (SPF) [3] and 3D-SHORE [4] bases. Fast discrete transforms have been proposed to model signals in wavelet bases.  They have the advantage to give an 

inverse transform without suffering from information loss. When dealing with SPF and SHORE bases, there is a infinite number of atoms. Hence, we need to 

truncate them to a given order.  Signal modeling is then done via least squares estimation (LSE) with or without regularization. However, continuous 

representations lead to analytical formulas to estimate other diffusion features [3]. In this work, we study the advantages and disadvantages of these discrete and 

continuous EAP representations for the first time. Here, the measure of sparsity is not biased by the reconstruction method as in [1].  

METHOD: Under the narrow pulse approximation, the EAP in real space, denoted P, and the diffusion signal in q-space, denoted E, are related by a Fourier 

Transform. In the CS-dMRI problem, we acquire E and try to estimate P. Among others conditions, we want P to have a sparse representation. We call c the 

transform coefficients representing P in a sparse basis. We evaluate the EAP sparsity in fives bases : Three  wavelet  bases  built from 1) Haar wavelet, 2) DCF 5-

3 wavelet, 3)  DCF 7-9 wavelet, and two other orthonormal bases i.e. the 4) SPF basis and 5) SHORE basis.  We generate the diffusion signal from a multi-

Gaussian model through six scenarios : One fiber, two 60/70/80/90◦-crossing fibers and three 90◦-crossing fibers. The signal is built on a cube of size 16*16*16 

with a maximum b-value of 6900 s/mm2. When dealing with bases 1-2-3, we apply a fast Fourier transform to the diffusion signal and then estimate c, via the 

corresponding discrete wavelet transform. When no fast transform is available (case of bases 4-5), we obtain the diffusion signal coefficients via ordinary LSE. 

Then, we can get the propagator via an analytical formula from the c coefficients [4].  If we want to do a fair comparison, we cannot use regularization for this 

problem. However,  by considering an overdetermined system (The number of measurements is larger than the number of atoms) we don't need a regularization 

term. In order to evaluate the sparsity of our bases, we look at the percentage of coefficients necessary to obtain 99% of the absolute cumulative value of all the 

coefficients. It gives an insight of how many coefficients is needed to correctly reconstruct the EAP. Moreover we compute the normalized mean square error 

(nmse) between the ground truth EAP P and the estimated EAP Pe in r-space. The nmse is given by
∑ i= 1. .N

�P(ri )– Pe (r i)�/ ∑ i= 1. .N
�P(ri)�

.  Table 1 shows these results. 

RESULTS: 

 1 fiber 2 fibers 90 2 fibers 80 2 fibers 70 2 fibers 60 3 fibers 90 

 % coeffs nmse % coeffs nmse % coeffs nmse % coeffs nmse % coeffs nmse % coeffs nmse 

Haar  54.57 32.83e-6 60.52 36.60e-6 59.77 35.84e-6 60.42 35.26e-6 60.74 34.56e-6 63.96 38.38e-6 

5-3 CDF 23.58 16.98e-6 22.41 11.62e-6 26.54 13.01e-6 28.56 14.33e-6 30.27 15.36e-6 22.53 11.02e-6 

9-7 CDF 13.45 6.23e-6 14.53 4.60e-6 18.16 5.21e-6 19.85 5.82e-6 20.19 6.47e-6 14.16 3.37e-6 

SPF 19.13 130.34e-3 11.74 85.84e-3 35.61 121.62e-3 35.80 150.18e-3 34.09 188.59e-3 11.55 118.29e-3 

SHORE 8.72 31.08e-3 5.08 16.19e-3 15.98 18.98e-3 19.85 21.73e-3 26.88 22.62e-3 3.63 14.05e-3 

Table 1: Percentage of coefficients necessary to obtain 99% of the absolute cumulative value of all the coefficients and nmse. 

In table 1, the dark gray cells represent the results associated with the discrete representations (Wavelet bases) and in light gray 

cells the results associated with the continuous representations (SPF and SHORE bases). For each scenario, the blue value 

represents the lowest percentage of coefficients necessary to correctly represent the propagator according to the criteria defined 

above, and the red value represents the smallest nmse between the ground truth propagator and the estimated propagator. 

Firstly, we see that the 9-7 CDF wavelet basis and the SHORE basis have the best sparse properties within their respective 

classes. The reason for the CDF 9-7 efficiency can be inferred from the visualization of the mother wavelets in figures 1, 2 and 3. 

Indeed, Haar wavelet is a simple step function that obviously cannot well represent other signal than piece-wise signal. CDF 5-3 

has a richer structure, which likely catch noise instead of significant information. Of course, other adequate mother wavelets exist 

and this topic has to be investigated.  In the following, we choose SHORE and CDF 9-7 wavelet bases as representatives of their 

respective classes. The SHORE basis obviously gives the best sparsity rate in case of 1 fiber and several fibers crossing at a 

medium or large degree (90 to 70 degrees). This is due to the Gaussian-behavior of this basis that adequately models the diffusion 

process. For 60 degree crossing fibers and lower degrees, the 9-7 CDF wavelet basis better fit the EAP. Why? The low scale 

wavelets, contributing in the modeling, enable the representation of small details and, thus, low degree crossings. Furthermore, 

the 9-7 CDF basis gives, by far, the lowest representation error overall (see nmse in red). This proves that fast transform is an 

important advantage for a basis. Because of the truncation of SHORE basis (as well as SPF basis), we will never reach a nmse as 

low as the one obtained with the 9-7 CDF  wavelet  basis.  

CONCLUSIONS: Considering continuous representations, no sparse transform exists. However, due to the Gaussian prior of these bases, they better fit the signal 

and give lowest sparsity rate than wavelet bases, at least for medium to large degrees of crossing fibers. Another advantage of these bases is the analytical formula 

used to obtain the EAP, the orientation distribution function (ODF). One drawback is the infinite number of atoms, which forces the bases truncation at a fixed 

angular an radial order. This truncation adds a modeling error in addition to the reconstruction error.  Thanks to its fast transform, the 9-7 CDF basis gives quasi-

exact result by modeling the signal with few coefficients. Moreover, 9-7 CDF wavelet basis can handle with smaller details than SHORE basis does. One future 

work would be the search of the mother wavelet that best fits the diffusion propagator to enhance the sparsity of the basis. To conclude this abstract, we can only 

suggest a basis depending on the application. If accurate EAP estimation within a cube, as DSI does, is required, then choose the  9-7 CDF wavelet basis. 

However, when diffusion features are looked for, a continuous representation as SHORE basis is suitable. 
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Figure 2 : CDF 5-3 wavelet

Figure 3 : CDF 9-7 wavelet

Figure 1 : Haar wavelet
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