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Introduction: The use of compressed sensing (CS)[1] in functional MRI has been limited so far[2], as it is in general more suitable for applications 
where the signal to noise ratio (SNR) is high. In this work, a novel fMRI analysis technique is proposed which utilizes CS to increase the frame rate 
while keeping the information loss in the CS reconstruction step minimal. This is achieved by applying temporal filters in k-space and partially 
separating the fMRI activation signal from the noise before CS reconstruction. 

Methods: Starting from CS undersampled k-space data from individual receiver channels, eddy-current compensation, phase correction, temporal 
high pass filtering and auto regression filtering were applied. The k-space data were then decomposed into three parts: a temporal mean, an 
activation coefficients map, and a residual noise data series. The three parts were separately transformed to the image domain using a Total Variation 
regularized CS reconstruction and recombined to form an image space data series on each channel, where the reconstructed noise needed to be 
rescaled by a factor Rf to get an unbiased variance estimate. The final data series were produced using sum of squares summation of channel data 
before recalculating beta-values and variance estimates for the fMRI analysis. In order to find the rescaling factor Rf, a synthetic noise data series 
was generated having the same variance distribution as the data. The simulated data set was undersampled and reconstructed using CS, and the 
rescaling factor found by comparison of the simulated and reconstructed data. Split Bregman iterations were used for the CS reconstruction[3]. 

The proposed technique was evaluated on two in vivo CS undersampled fMRI data sets acquired on a Siemens TIM-TRIO (Siemens Healthcare, 
Erlangen)  using the 4 CP mode channels on the 12 channel head coil. A 3D PRESTO sequence [4] was implemented using the IDEA programming 
tool, with segmented EPI readout and possibility for CS undersampling. FOV = 240 mm x 240 mm x 118 mm, matrix = 80 x 80 x 36 (giving 3 mm 
isotropic resolution), α = 10°, TR = 22 ms, effective TE = 33 ms and echo-train length=20. One third of the total 4x36 = 144 segments were 
randomly selected and acquired, giving a volume time of 1.056 seconds. One block of the functional paradigm consisted of 15 seconds of rest 
followed by 15 seconds of visual stimulation using a flashing checkerboard with frequency of 8 Hz. The total scan time was 258 seconds or 244 
frames. 

 

 

 

 

 

 

 

Results: The fMRI analysis of both in vivo data sets correctly identified the visual cortex as the area of activation. The resulting t values were very 
high, and little activation was found outside the occipital region. Axial cross-sections of the reconstructed activation maps are shown in Figure 1, and 
some statistical data for the two measurements are presented in Table 1. The rescaling factor Rf was found to be 1/0.7 for all simulated noise 
distributions, an example is given in Figure 2. Reconstructed temporal mean images were decent except some signal loss in areas with rapid B0 
variations, but this was not critical for the fMRI analysis as it only affected the weighting between the channels in the final reconstruction. 

Discussion and Conclusion: The results show that by using the proposed method, the degradation of image quality due to CS reconstruction is 
outweighed by the increased number of frames and improved removal of non-thermal noise. In this case the frame rate is close to the heart 
frequency, meaning that much of the signal from heart beats folds down to the lower frequency region where it is removed by the initial highpass 
filter. Motion correction was not performed, but reconstruction of the data frame by frame is possible with quality that makes motion correction 
feasible. Further work will address the signal loss in areas of the reconstructed mean images, and include simulations to evaluate the robustness of 
the method as well as its applicability for areas with weaker activation signals. 
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Figure 1: Axial slices of reconstructed 
activations maps (P < 10-6) for subject 1 
(left) and subject 2 (right).The green line 
separates anterior and posterior parts, see 
Table 1. 

Table 1: Statistics from the fMRI analysis, two-sided 
tests are assumed when calculating P-values. 

 
Anterior part Subject 1 Subject 2 
#Voxels 89280 89280 
#Voxels with P < 10-6 672 415 
#Voxels with P < 10-12 316 143 
Highest t-value (df = 243) 35.2 18.7 
Posterior part   
#Voxels 141120 141120 
#Voxels with P < 10-4 37 93 
#Voxels with P < 10-6 7 14 
Highest t-value (df = 243) 5.94 7.42  

Figure 2: Simulated vs reconstructed noise. 
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