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Introduction 
 Tissue motion in time resolved MR imaging can be classified as voluntary (swallowing, moving in the magnet, etc…) and 
involuntary/physiological (related to the cardiac cycle, etc…).  Since the latter type is periodic it is often modeled with a small number of principle 
components.  As a result, principle component analysis is a popular method of reconstructing undersampled MRI data (1-3).  The basic premise is that a 
time resolved data set can be constrained by keeping only a small number of principal components from the singular value decomposition (SVD).  
However, modeling the data in this manner can be problematic when two voxels exhibit highly correlated motion that differs by only a small delay in time.  
In such cases, keeping only a small number of principle components can result in an erroneous temporal shift of voxel signals (Fig. 1).  The proposed 
method preserves these small temporal shits when time resolved data is constrained using principle component analysis. 
 
Theory 
 If the signals from two voxels differ only by a multiplicative constant, then a SVD will find that both voxels contain the same principle 
component.  If however, the two signals differ only by a small shift in time, then the SVD will find that each voxel has different principle components.  
When the signals from two different voxels are identical except for a time delay, then the Fourier Transform of the signals differ only by a linear phase: 
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Because the two spectrums vary by a linear phase rather than a multiplicative constant, the SVD method is unable to correlate the signal from the two 
voxels.  However, if the linear phase is removed prior to calculating the SVD, then both voxels will have the same principle component.  The linear phase 
can then be added back when the voxel signals are reconstructed from the principle component.  In many instances the signal from a given voxel will be 
a linear combination of multiple principle components, each with their own temporal shift.  The general procedure in this case is: 
1)  Remove the linear phase of the signal.  We consider only the central points in the spectrum when calculating the linear phase.  The amount of linear 
phase removed should be noted for later image reconstruction. 
2)  Find the dominant principle component using SVD. 
3)  Subtract the scaled and time shifted (use linear phase from 
step 1) principle component from the data set. 
4)  Repeat steps 1-3 for the desired number of principle 
components. 
 
Results and Discussion  
 Figure 1 shows data from a 2D CineTSE image 
reconstruction (4 element receive coil, a resolution of 0.5mm x 
0.5mm x 2mm, 12 echoes per train and a TR/TE of 
650ms/8ms).  Initially a fully sampled data set (12 cardiac 
phases) is reconstructed with a selected image shown in Fig. 
1a and the temporal signal in the two indicated vessels shown 
in Fig. 1b (signal intensities have been normalized for display 
purposes).  The blood signal intensities in two adjacent vessels 
are correlated but shifted in time (Fig. 1b).  The CineTSE data 
is then retrospectively undersampled (R=6) and reconstructed 
using a highly constrained PCA algorithm (constraining the data 
to contain only a few principle components).  The 
undersampled reconstruction will be some linear combination of 
the principle components retained.  If too many principle 
components are retained then too little of the undersampling 
artifact will be removed by the reconstruction process.  
However, when only a limited number of components are 
retained, the signal in some voxels might be temporally shifted 
to obtain the best match to the available principle components 
(Fig. 1c).  This creates a competition between reducing 
undersampling artifact and retaining the temporal 
characteristics of our data.  If instead, we allow the voxel 
signals to be a linear combination of the time shifted components, then we can better preserve the temporal behavior of each voxel (Fig. 1d).  In the 
latter case, we are using the same principle components to reconstruct the signal but allow for the possibility that a time shifted version of each 
component might better match our data.  Comparing Fig. 1c/1d to Fig. 1b we see the improved signal matching of the time shifted PCA. 
 
Conclusion 
 Principle component analysis is a powerful tool to reconstruct undersampled data.  However, when the number of principle components is 
restricted the temporal characteristics of our data can be altered inadvertently.  The proposed method helps to address this concern by reducing the 
number of principle components needed to reconstruct an undersampled data set using principle component analysis. 
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Figure 1:  Axial 2D CineTSE data.  A select image from the fully sampled data is 
shown in (a) with vessels of interest indicated by the colored arrows.  The blood 
signal intensity at each of the colored arrows is plotted in the graphs to the right (b-
d).  The fully sampled data shows how the vessel signals are correlated but shifted 
in time (b).  If the data is highly constrained using a standard PCA algorithm, the 
signal in the two vessels become aligned in time (c).  A time shifted PCA algorithm 
with the same level of constraint recovers the temporal difference between the two 
signals (d).

2267Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)


