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Introduction: Compressed Sensing (CS) enables great acceleration of MRI acquisition through k-space random
sampling of highly compressible images [1]. The reconstruction of CS images involves constrained £,-minimization,
for which standard convex optimization technique, such as nonlinear conjugate gradient (NCG) [2], suffer from slow
convergence. On the other hand, many iterative thresholding techniques have been developed for computational
tractability, but at the expense of accuracy [3]. This work introduces a fast £;-minimization algorithm for CS based on

orthonormal expansion of sensing matrix. Exhibit 1: Outline of Fast #;-minimization
Method: CS reconstruction in MRI is formulated as follows: ;

X = arg ming{|[X|| : Fo¥~'X = b}, Input: Y = 0, pg > 0, b, Q, &, py = { 0 J -
where X is the sparse representation of the MR image to be While not convereent do
reconstructed from the acquired k-space data b. W is the /iStep 1 solves x4 = arg min L(z, pe, Y ix)

sparsifying transform, and Fq is the partial Fourier transform

ory 1- - ~1(p 1y,
over the k-space down-sample subset Q. Denote FoW™! as Step I:xrs1 = Sy, (27 (pr + r YE))

sensing matrix A, which contains a subset of rows of a unitary /IStep 2 solves py41 = argmin L(p, Tr41, Yk, pix)
matrix & =[ATBT|T. B is the complementary partial by
orthonormal matrix, whose rows are orthonormal to those of A. Step 2:pi+1 = Ps(®zrs1 — pp ' Ya) ]
By expanding'A to @, we cast the standard CS #;-minimization Step 3:Yis1 = Ya fuklmq _ (f;_,.kﬂ}
into the following equivalent form: Step 4iftps1 > i
mingy ) [1X]]4 subject to ®X = p, Py (p)=b, Step 5:k =k + 1

where P,(p) is an operator projecting the vector p, the nominal end
fully-sampled k-space data, onto the down-sample subset Q. Output: g, pr
The new formulation can be written into the following
augmented Lagrangian function:

LX,p,y,) = 11Xl + 5 lIp = X + 1 tyl13 — |lyl13/20,
where p is a positive scalar and y is the Augmented Lagrange
Multiplier (ALM) [4] that introduces an additional quadratic
penalty term. This augmented Lagrangian function is
minimized by alternatively solving two sub-problems:

(1): miny L(X, p,y, 1) and (2): min, p,py=p L (X, 0,3, ).

It is the orthonormal expansion of the sensing matrix A to ®
that enables the first sub-problem to be optimally solved with a
soft-thresholding operation; i.e., argminy L = SH-1(CI>‘1(p +
©~1y)), where S,-1(w) = sgn(w)(Ilw| —p~)* . The second
sub-problem is solved by letting BPZL@) = 0, where Q denotes
the complementary of the sub-sample set Q. The solution to
the second sub-problem is Pg(p) = Pg(®X —u~ly), and
Po(p)=b is enforced as a data-fixing operation.

The proposed algorithm outlined in Exhibit 1 was evaluated
with both Shepp-Logan phantom and a brain study. The
phantom and brain images underwent 85% and 67% down-
sampling with a Poisson-disk random sampling pattern [3].
The reconstruction performance is compared with the NCG
method as described in [2]. Both algorithms were implemented Fig. 1: The proposed algorithm achieves

in MATLAB, running on a Linux PC equipped with 3 GHz Intel significantly fast convergence than the NCG

Core2 DUO CPU and 3 GB memory. method. The phantom and brain images obtained

Result: Fig. 1 compares the phantom and brain reconstruction ~from the proposed algorithm (b, d) are more

results after running the NCG method and the proposed accurate than that of NCG method (a, c), as
algorithm for 50 iterations. For the phantom study, the NCG manifest with better depiction of image details.
method and the proposed method resulted in 8.3% and 1.21%

Root-mean-squares (RMS) errors, respectively. For the brain study, the RMS error of the proposed method is 2.29%,
which is lower than 5.67% RMS error of NCG.

Conclusion: Orthonormal expansion of the sensing matrix into unitary enables fast £;-minimization: soft-thresholding
that incurs little computational cost optimally solves ones of the sub-problems in each iteration. The proposed method
holds great potential for accurate real-time on-line CS reconstruction.
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