
Exhibit 1: Outline of Fast  ℓଵ-minimization 

Fig. 1: The proposed algorithm achieves 
significantly fast convergence than the NCG 
method. The phantom and brain images obtained 
from the proposed algorithm (b, d) are more 
accurate than that of NCG method (a, c), as 
manifest with better depiction of image details.  
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Introduction: Compressed Sensing (CS) enables great acceleration of MRI acquisition through k-space random 
sampling of highly compressible images [1]. The reconstruction of CS images involves constrained ℓଵ-minimization, 
for which standard convex optimization technique, such as nonlinear conjugate gradient (NCG) [2], suffer from slow 
convergence. On the other hand, many iterative thresholding techniques have been developed for computational 
tractability, but at the expense of accuracy [3]. This work introduces a fast ℓଵ-minimization algorithm for CS based on 
orthonormal expansion of sensing matrix.  
Method: CS reconstruction in MRI is formulated as follows:  X ൌ arg minଡ଼ሼห|X|หଵ: ࣠ΩΨିଵX ൌ bሽ , 
where X is the sparse representation of the MR image to be 
reconstructed from the acquired k-space data b . Ψ  is the 
sparsifying transform, and ࣠Ω  is the partial Fourier transform 
over the k-space down-sample subset Ω . Denote ࣠ΩΨିଵ  as 
sensing matrix A, which contains a subset of rows of a unitary 
matrix Φ ൌ ሾA୘ B୘ሿ୘.  ܤ  is the complementary partial 
orthonormal matrix, whose rows are orthonormal to those of ܣ. 
By expanding A to Φ, we cast the standard CS ℓଵ-minimization 
into the following equivalent form: minሺ௑,௣ሻ ||ܺ||ଵ  subject to Φܺ ൌ ,݌ Ωܲሺ݌ሻ=b, 
where  Ωܲሺ݌ሻ is an operator projecting the vector ݌, the nominal 
fully-sampled k-space data, onto the down-sample subset Ω. 
The new formulation can be written into the following 
augmented Lagrangian function: ܮሺܺ, ,݌ ,ݕ ሻߤ ൌ ||ܺ||ଵ ൅ ఓଶ ݌|| െ Φܺ ൅ ଶଶ||ݕଵିߤ െ  ,ߤଶଶ/2||ݕ||
where ߤ is a positive scalar and ݕ is the Augmented Lagrange 
Multiplier (ALM) [4] that introduces an additional quadratic 
penalty term. This augmented Lagrangian function is 
minimized by alternatively solving two sub-problems:  

(1): min௑ ,ሺܺܮ ,݌ ,ݕ ܮ ሻ and (2): min௣,௉Ωሺ௣ሻୀୠߤ ሺܺ, ,݌ ,ݕ  .ሻߤ
It is the orthonormal expansion of the sensing matrix ܣ to Φ 
that enables the first sub-problem to be optimally solved with a 
soft-thresholding operation; i.e., arg min௑ ܮ ൌ ܵఓషభ൫Φିଵሺ݌ ൅ିߤଵݕሻ൯ , where ܵఓషభሺݓሻ ൌ sgnሺݓሻሺ|ݓ| െ ଵሻାିߤ . The second 
sub-problem is solved by letting డ௅డ௉Ωഥሺ௣ሻ ൌ 0, where Ωഥ denotes 
the complementary of the sub-sample set Ω. The solution to 
the second sub-problem is ܲΩഥሺ݌ሻ ൌ ܲΩഥሺΦܺ െ ሻݕଵିߤ , and  Ωܲሺ݌ሻ=b is enforced as a data-fixing operation.  
The proposed algorithm outlined in Exhibit 1 was evaluated 
with both Shepp-Logan phantom and a brain study. The 
phantom and brain images underwent 85% and 67% down-
sampling with a Poisson-disk random sampling pattern [3]. 
The reconstruction performance is compared with the NCG 
method as described in [2]. Both algorithms were implemented 
in MATLAB, running on a Linux PC equipped with 3 GHz Intel 
Core2 DUO CPU and 3 GB memory. 

Result: Fig. 1 compares the phantom and brain reconstruction 
results after running the NCG method and the proposed 
algorithm for 50 iterations. For the phantom study, the NCG 
method and the proposed method resulted in 8.3% and 1.21% 
Root-mean-squares (RMS) errors, respectively. For the brain study, the RMS error of the proposed method is 2.29%, 
which is lower than 5.67% RMS error of NCG.  
Conclusion: Orthonormal expansion of the sensing matrix into unitary enables fast ℓଵ-minimization: soft-thresholding 
that incurs little computational cost optimally solves ones of the sub-problems in each iteration. The proposed method 
holds great potential for accurate real-time on-line CS reconstruction. 
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