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INTRODUCTION  
MR Image quality highly depends on the noise propagating behavior of the image reconstruction method. For example, the noise behavior of 

SENSE reconstruction due to is fully characterized by the g-factor[1]. As an emerging reconstruction technique, compressed sensing (CS) has 
demonstrated great potential to reconstruct high quality images from undersampled k-space data [2]. However, to the best of our knowledge, the 
noise behavior of CS reconstruction in MRI remains largely unexplored. It limits the application 
of CS in clinical practice. The objective of this work is to analyze how noise is distributed and 
changed with different reduction factors. We particularly focus on dynamic contrast-enhanced 
imaging (DCE-MRI)[3], in which CS holds great potential for significant improvement in 
spatiotemporal resolution. The temporal and spatial noise behavior in CS-based DCE-MRI is 
characterized using the Marcenko-Pastur (MP)-Law method [4], because this method is 
applicable to any image reconstruction algorithms and can deal with the cases where organs of 
interest are moving or image contrast is changing over time.    
METHODS  
The study was IRB approved. 9 subjects with written informed consent were recruited in the 
study. Full DCE-MRI scans of each subject was acquired on a 1.5T scanner (Magnetom Avanto, 
SIEMENS,Erlangen, Germany) using a 2D Turbo Flash sequence. The reconstruction matrix 
was 208×256. 90 frames were acquired. The datasets were resampled and reconstructed using 
the k-t ISD method with a scan time reduction factors of R=3.6 and R=6.3. This method is a 
dynamic imaging method based on CS with partial known support theory by exploiting the 
additional prior information on the support of spatial and temporal–frequency (x-f) domain [5]. 
After reconstruction, the eigen-images and corresponding eigen-values were calculated from 
reconstructed image series using Karhunen-Loeve transform (KLT). 
The noise-only eigen-images were then identified by iteratively fitting 
their distribution to MP distribution demonstrated in random matrix 
theory. The temporal noise variance for each pixel was then evaluated 
from the intensity fluctuation across these eigen-images. The variance 
of all pixels consists of one noise-variance map for one series of 
images. A series of 90 spatial noise maps were generated by the 
inverse KLT of the noise-only eigen-images [4].  
RESULTS AND DISCUSSION 
Fig.1 plots the averages (circle) and standard deviations (lines) of 
noise-only eigen-images for R=1 (no CS), 3.6 and 6.3 over all 9 
subjects. We can see that Fourier reconstruction without acceleration 
has the most noise-only eigen-images. The CS reconstruction with 
R=3.6 has fewer than that with R=6.3. Fig.2 shows the 
reconstructions, corresponding spatial noise maps of a single time 
frame, and the temporal noise variance maps of a single subject (top 
to bottom) with R=1, 3.6 and 6.3 from left to right. The maps in the 
same category (spatial or temporal) are shown on the same scale for 
different reduction factors. There are no visible artifacts in the 
reconstructions with R=3.6 and 6.3. Similar results were obtained 
from other subjects. From the aforementioned figures, it is seen that: 
(1) The noise level of the Fourier reconstruction from full data is higher than those of reconstructions by CS-based method. It may due to additive 
noise in measurements. Please note, the nonuniformity of noise in Fourier reconstruction is due to the spatial normalization using low-resolution 
image and elliptical filtering in each frame.  
(2) The denoising capability of CS-based method has been demonstrated before only from reconstructions [2]. There is no evaluation such as noise 
map to illustrate the distribution of noise after CS reconstructing. In Fig.2, the spatial noise distributed randomly, while the temporal noise variance 
in CS reconstruction is spatially variant. It can be observed that regions with more dynamical changes present a higher level of noise fluctuation. The 
reason could be first, k-t ISD reconstructs x-f space from undersampled data; second the regularization in CS may be change the distribution of noise 
due to the nonlinearity and the image-content-dependent constraint (image is transform sparse) used in CS reconstruction. 
(3) The noise level from CS reconstruction increases with reduction factors. This is in agreement with the number of noise-only eigen-images shown 
in Fig.1, and with the observations in Ref [4] that when higher reduction factors are used, noise level increases and signal eigen-images with small 
eigen-values may become indistinguishable from noise.  
CONCLUSION 
In this work, the MP-Law method is used to evaluate the spatial and temporal noise in DCE-MRI series reconstructed using CS-based method. The 
results provide a qualitative understand of the noise behavior in CS reconstructed DCE images. Such understanding will accelerate application of CS 
in clinical practice. Future work will carry out quantitative study of noise behavior of a number of CS reconstruction methods. 
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Fig. 1 The number of noise-only eigenimages over 
all subjects for different reduction factors. 

     Fig. 2 Images and noise maps for different reduction factors. 
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