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Introduction: Compressed Sensing (CS) [1, 2] is an acceleration technique that enables reduction 
in the sampling and recently applied in MRI [3] based on the sparsity of medical images. 
Conventional CS recovery techniques are based on simplistic sparsity of signal，which uses 
uniform L1-norm penalty regardless of whether the coefficients contribute to significant 
information for pathological diagnosis. This results in reconstruction errors, like blurring edges. In 
this study, we propose a new algorithm using Hidden Markov Tree model [4] to extract statistical 
structural information in wavelet domain, such that the sparsity is constrained selectively. In this 
way important coefficients are enhanced and artifacts are further reduced. Experimental results on 
phantom simulation and in-vivo show more preserved details and better artifact reduction. 
Methods: 
I. Model Based Compressed Sensing: Conventional CS algorithms approximate MRI images 
based on simplistic sparse assumption and use a uniform L1-norm penalty for all coefficients [1~3] 
without considering whether they contribute to fine details in image domain or wavelet domain. 
Several new studies [5, 6] demonstrated that there are significant performance gains by exploiting 
realistic models beyond simplistic sparsity. 
II. Modeling Wavelet Structure: MRI images have sparse wavelet expansions and significant 
wavelet coefficients exhibit properties that can be modeled by wavelet quad-tree [7] (Figs. 1.a, 
1.b): Persistence Property (significance persists across the scales), Scale-dependence (persistence 
becomes stronger to finer scale) and Decaying Magnitudes (magnitude drops exponentially to 
finer scale). It should be noted that the wavelet domain structure cannot be defined just by values 
since they obey mixture distribution and threshing cannot differentiate noise with small but 
important signal. Thus, statistical methods and models are required. 
III. Hidden Markov Tree (HMT) Model: We used a Hidden Markov Tree to model the 
probability density function of each wavelet coefficient as a Gaussian mixture density [8] with a 
hidden binary state ܵ௡, which in our application indicates whether coefficients are ‘Negligible’ 
࢔ࡿ) = ࢔ࡿ) ’or ‘Significant (ࡺ =  The properties of 2D wavelet quad-tree are captured by a .(ࡿ
Hidden Markov Quad-Tree Model in which the Gaussian mixture distribution and Transition 
Matrices between states (See Figs. 1.c, 1.d) are functions of several parameters including the scale 
J in wavelet-tree.  
IV. Regulating CS Reconstruction with Model-based Structure: 
We estimated HMT parameters 	Θ෡(ࣂ) = ൛࢖૚ࡺ, ,ࡿ૚࢖ ,ࡺࢻ ,ࡿࢻ ,ࡺࢽ ,ࡿࢽ ,ࡺ࣌࡯ ,ࡿ࣌࡯ ,ࡺ࡭࡯ 	ൟࡿ࡭࡯ and the 
probability of hidden states using Expectation-Maximization (EM) algorithm [7, 9] and a 
Tree-Viterbi algorithm, which are efficient and enjoy just linear complexity. Then we employed 
statistical matrices ࢔ࢃ෢  based on state probabilities of being ‘Significant’ to further regulate 
iterative optimization and statistically penalize coefficients that are ‘Negligible’ (small or isolated) 
to wavelet structure. (ࢸ: wavelet operator.	ऐ࢛: partial Fourier transform. ࢔ࡿ: HMT hidden 
states. Parameters Θ෡  are computed from measured k-space ࢟ and reconstructed image	࢔ࢃ .(࢓෢ (࢏) ∝ ࢔ࡿ)࢖ = ෢࢓ࢸ|ࡿ ෢࢓ࢸ)	૚,Θ෡ି࢏ ෝ࢓ ૚))ି૚ି࢏ (࢏) = ෢࢔ࢃቛ࢔࢏࢓ࢍ࢘ࢇ ቛ૚࢓ࢸ(࢏) , ࢙. ࢚. ‖ऐ࢛࢓− ࢟‖૛ <  ࢿ
Results:  
We tested our algorithm both on Shepp-Logan phantom and in-vivo data. Phantom results show 
our algorithm helps to remove artifacts and preserve edges well (Figs 2). The in-vivo brain images 
from a healthy subject were acquired using a 3-T scanner (GE Healthcare, Waukesha, WI, USA) 
with T1-flair sequence (TR=2.559s, TE=6.356ms, matrix=256x256, FOV=220x220mm).The data 
is reconstructed with 4 fold acceleration along phase-encoding direction, using our algorithm, 
conventional algorithm (CS) [3] and another algorithm considering wavelet supports based on 
coefficient values with iterative hard thresh (CS-ISD) [10] (Figs 3) All sharing parameters are the 
same. RMSE plot(Figs 4) shows the proposed algorithm results in faster and better reconstruction. 
Conclusion: A model-based CS algorithm is proposed for 
MRI reconstruction. The statistical structure of wavelet 
coefficients are estimated using Hidden Markov Tree 
Model and sparsity penalty is optimized using structural 
matrices. Better reconstruction is achieved with fewer 
iterations, but no more computational complexity or more 
parameter tuning. This can be further applied to functional 
and abdominal MRI for which both faster acquisition and 
fine details are favored. More study is also in progress on 
how to further improve structure estimation and statistical matrices. 
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Figure 1: Wavelet quad-tree structure and HMT 
model. a: In wavelet tree, each coefficient is
connected to 4 child coefficients. b: Two hidden 
states and their transition are modeled by HMT. c:
coefficients obey Gaussian mixture density with 
hidden states. d: transition matrices of HMT. 

Figure 2: phantom simulations. a: fully sampled
phantom image, b-c: 4-fold reconstruction after
10 iterations, using conventional CS and
proposed algorithm. d: statistical wavelet
structure ࢔ࡿ)࢖ =  e-f: zoom-in views .(ࡿ

Figure 3 (UP): In-vivo brain image, after 10
iterations. a: fully sampled. b: 4-fold sampling
pattern. c:computedstatistical wavelet structure.
d-f: reconstruction results after 10 iterations, with
conventional CS, CS-ISD, CS-HMT. g-i: errors. 
Figure 4 (UPLEFT): Quantitative comparison. 
RMSE of 4-fold CS recovery for brain image, with
conventional CS, CS-ISD & proposed algorithm. 
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